克拉默法则

      克拉默法则 解决的是方程个数与未知数个数相等并且系数行列式不等于零的线性方程组

含有n个未知数x1, x2,....xn的n个线性方程的方程组:

它的解可以用n阶行列式表示,既有 克拉默法则 如果线性方程组的系数方阵A的行列式不等于零,即

,那么方程组有唯一解:

,其中Aj (j = 1, 2, ..., n)是吧系数矩阵A中的第j列元素用方程组右端的常数项代替后的到n阶矩阵,即

 

证明

       把方程组写成矩阵方程 Ax = b, 这里为n阶矩阵,因 |A| ≠ 0,存在。令,表明是方程组的解向量。

证毕

转载于:https://my.oschina.net/1024bits/blog/785756

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值