[LeetCode] Bulls and Cows

Bulls and Cows 游戏算法解析
本文深入解析了经典代码破解游戏 Bulls and Cows 的算法实现,介绍了如何通过计算正确位置的数字(bulls)和错误位置的数字(cows),帮助玩家猜测秘密数字。文章详细阐述了使用哈希映射和标记数组来高效计算提示信息的方法。

Bulls and Cows

You are playing the following Bulls and Cows game with your friend: You write a 4-digit secret number and ask your friend to guess it, each time your friend guesses a number, you give a hint, the hint tells your friend how many digits are in the correct positions (called "bulls") and how many digits are in the wrong positions (called "cows"), your friend will use those hints to find out the secret number.

For example:

Secret number:  1807
Friend's guess: 7810

Hint: 1 bull and 3 cows. (The bull is 8, the cows are 01 and 7.)

 

According to Wikipedia: "Bulls and Cows (also known as Cows and Bulls or Pigs and Bulls or Bulls and Cleots) is an old code-breaking mind or paper and pencil game for two or more players, predating the similar commercially marketed board game Mastermind. The numerical version of the game is usually played with 4 digits, but can also be played with 3 or any other number of digits."

Write a function to return a hint according to the secret number and friend's guess, use A to indicate the bulls and B to indicate the cows, in the above example, your function should return 1A3B.

You may assume that the secret number and your friend's guess only contain digits, and their lengths are always equal.

Credits:
Special thanks to @jeantimex for adding this problem and creating all test cases.

 

Subscribe to see which companies asked this question

 1 class Solution {
 2 public:
 3     string getHint(string secret, string guess) {
 4         int cntA = 0, cntB = 0;
 5         unordered_map<char, int> hash;
 6         vector<bool> tag(secret.size(), false);
 7         for (auto a : secret) {
 8             ++hash[a];
 9         };
10         for (int i = 0; i < secret.size(); ++i) {
11             if (secret[i] == guess[i]) {
12                 ++cntA;
13                 --hash[secret[i]];
14                 tag[i] = true;
15             }
16         }
17         for (int i = 0; i < guess.size(); ++i) {
18             if (!tag[i] && hash[guess[i]] > 0) {
19                 ++cntB;
20                 --hash[guess[i]];
21             }
22         }
23         return to_string(cntA) + "A" + to_string(cntB) + "B";
24     }
25 };

 

一、数据采集层:多源人脸数据获取 该层负责从不同设备 / 渠道采集人脸原始数据,为后续模型训练与识别提供基础样本,核心功能包括: 1. 多设备适配采集 实时摄像头采集: 调用计算机内置摄像头(或外接 USB 摄像头),通过OpenCV的VideoCapture接口实时捕获视频流,支持手动触发 “拍照”(按指定快捷键如Space)或自动定时采集(如每 2 秒采集 1 张),采集时自动框选人脸区域(通过Haar级联分类器初步定位),确保样本聚焦人脸。 支持采集参数配置:可设置采集分辨率(如 640×480、1280×720)、图像格式(JPG/PNG)、单用户采集数量(如默认采集 20 张,确保样本多样性),采集过程中实时显示 “已采集数量 / 目标数量”,避免样本不足。 本地图像 / 视频导入: 支持批量导入本地人脸图像文件(支持 JPG、PNG、BMP 格式),自动过滤非图像文件;导入视频文件(MP4、AVI 格式)时,可按 “固定帧间隔”(如每 10 帧提取 1 张图像)或 “手动选择帧” 提取人脸样本,适用于无实时摄像头场景。 数据集对接: 支持接入公开人脸数据集(如 LFW、ORL),通过预设脚本自动读取数据集目录结构(按 “用户 ID - 样本图像” 分类),快速构建训练样本库,无需手动采集,降低系统开发与测试成本。 2. 采集过程辅助功能 人脸有效性校验:采集时通过OpenCV的Haar级联分类器(或MTCNN轻量级模型)实时检测图像中是否包含人脸,若未检测到人脸(如遮挡、侧脸角度过大),则弹窗提示 “未识别到人脸,请调整姿态”,避免无效样本存入。 样本标签管理:采集时需为每个样本绑定 “用户标签”(如姓名、ID 号),支持手动输入标签或从 Excel 名单批量导入标签(按 “标签 - 采集数量” 对应),采集完成后自动按 “标签 - 序号” 命名文件(如 “张三
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值