[Contest20180323]King

跳蚤国王要召开第二届内阁会议,所以把所有跳蚤都召集到了会议室。所有跳蚤在会议室的圆桌前坐成了一个圈,从$1$到$n$标号,每人的面前都有一盏明灯。

就在会议就要开始的时候,国王突然发现,并不是所有的灯都点亮了,有强迫症的他绝不会在有灯没有被点亮的时候开始会议。

现在国王要指定一些位置的跳蚤,他会报出这些跳蚤的序号,让他们把面前的灯改变状态。

可是这些跳蚤大臣并不想开会,虽然这些跳蚤必须按照国王的指令形式行事,但是他们会在国王下达指令之后,偷偷转动面前的桌子任意次(转动一次之后本来在$n$号跳蚤面前的灯就在$1$号跳蚤面前了),这样虽然对应序列的跳蚤确实改变了面前的灯的状态,但是会议并不能开始因为灯还没有全部点亮。

国王也知道这一点,所以他很好奇,他有没有一种办法在有限轮之后开始会议呢?

小w向国王毛遂自荐,国王很怀疑小w的能力,所以为了保证数据强度,国王会给小w一个初始的串,每次问小w一个子串是否能在有限轮之后开始会议。

如果区间长度$len=r-l+1$是奇数,并且不全灭或不全亮,那么无解

假设$len=q\cdot2^k$,其中$q$是奇数,把区间按$i\%2^k$分类,每类$q$盏灯,整个区间有解要求每组都有解,也就是每组全灭或全亮,所以如果没有长度为$2^k$的循环节,那么肯定无解

如果有长度为$2^k$的循环节,那么问题转化成只考虑这$2^k$盏灯,下面证明$2^k$盏灯是一定有解的

以下的多项式系数都是模$2$意义下的数(亮or灭),所有多项式运算在模$x^{2^k}-1$意义下进行(循环位移)

先证$x^{2^k}-1=(x-1)^{2^k}$

对$k$归纳,当$k=0$时显然成立

假设$x^{2^{k-1}}-1=(x-1)^{2^{k-1}}$,那么$(x-1)^{2^k}=\left((x-1)^{2^{k-1}}\right)^2=\left(x^{2^{k-1}}-1\right)^2=x^{2^k}-1$

由归纳法,定理得证

如果把这个区间看成多项式$f(x)$(亮灯系数为$1$,灭灯系数为$0$,系数是模$2$意义下的数),把国王的指令看成多项式$g(x)$,那么大臣旋转桌子$d$位后再执行指令可以看做$f'(x)=f(x)\cdot x^d+g(x)$,国王可以取$g(x)=f(x)$,那么$f'(x)=f(x)\left(x^d+1\right)=f(x)(x-1)(x^{d-1}+\cdots+1)$

国王每下一次命令,$f(x)$就会被乘上$(x-1)$,由$(x-1)^{2^k}=x^{2^k}-1$可得最后$f(x)$会变成$0$(被取模),所以$2^k$盏灯一定有解

#include<stdio.h>
typedef unsigned long long ull;
char s[100010];
ull h[100010],b[100010];
ull get(int l,int r){return h[r]-h[l-1]*b[r-l+1];}
int main(){
	int n,q,i,l,r;
	scanf("%d%d%s",&n,&q,s+1);
	b[0]=1;
	for(i=1;i<=n;i++){
		b[i]=b[i-1]*29ull;
		h[i]=h[i-1]*29ull+(ull)(s[i]-'0');
	}
	while(q--){
		scanf("%d%d",&l,&r);
		i=r-l+1;
		i&=-i;
		if(l==r||get(l+i,r)==get(l,r-i))
			puts("ephemeral");
		else
			puts("endless");
	}
}

转载于:https://www.cnblogs.com/jefflyy/p/8631183.html

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值