hdu 5533 Dancing Stars on Me(数学,水)

本文介绍了一种通过计算平面内多个点之间的距离来判断这些点是否能构成正多边形的方法。该方法首先计算所有点对之间的欧氏距离,并记录最小距离出现的次数。若最小距离恰好出现n次,则表明这些点可以构成一个正n边形。

Problem Description

The sky was brushed clean by the wind and the stars were cold in a black sky. What a wonderful night. You observed that, sometimes the stars can form a regular polygon in the sky if we connect them properly. You want to record these moments by your smart camera. Of course, you cannot stay awake all night for capturing. So you decide to write a program running on the smart camera to check whether the stars can form a regular polygon and capture these moments automatically.

Formally, a regular polygon is a convex polygon whose angles are all equal and all its sides have the same length. The area of a regular polygon must be nonzero. We say the stars can form a regular polygon if they are exactly the vertices of some regular polygon. To simplify the problem, we project the sky to a two-dimensional plane here, and you just need to check whether the stars can form a regular polygon in this plane.

 

Input
The first line contains a integer T indicating the total number of test cases. Each test case begins with an integer n, denoting the number of stars in the sky. Following n lines, each contains 2 integers xi,yi, describe the coordinates of n stars.

1≤T≤300
3≤n≤10010000≤xi,yi≤10000
All coordinates are distinct.

 

Output
For each test case, please output "`YES`" if the stars can form a regular polygon. Otherwise, output "`NO`" (both without quotes).
 

 

 

Sample Input
3
3
0 0
1 1
1 0
4
0 0
0 1
1 0
1 1
5
0 0
0 1
0 2
2 2
2 0

 

 

 

Sample Output
NO 
YES 
NO

 

 

 

Source
 
题意:给你几个点,判断这几个点能否组成正n边形
先算出两两之间的距离存于mp[][]数组,然后找出最小的距离minnn,如果mp数组刚好有n个等于minnn,则是正多边形
 1 #pragma comment(linker, "/STACK:1024000000,1024000000")
 2 #include<iostream>
 3 #include<cstdio>
 4 #include<cstring>
 5 #include<cmath>
 6 #include<math.h>
 7 #include<algorithm>
 8 #include<queue>
 9 #include<set>
10 #include<bitset>
11 #include<map>
12 #include<vector>
13 #include<stdlib.h>
14 #include <stack>
15 using namespace std;
16 #define PI acos(-1.0)
17 #define max(a,b) (a) > (b) ? (a) : (b)
18 #define min(a,b) (a) < (b) ? (a) : (b)
19 #define ll long long
20 #define eps 1e-10
21 #define MOD 1000000007
22 #define N 106
23 #define inf 1<<26
24 int n;
25 double x[N],y[N];
26 double mp[N][N];
27 double cal(int i,int j){
28    return ((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
29 }
30 int main()
31 {
32    int t;
33    scanf("%d",&t);
34    while(t--){
35       scanf("%d",&n);
36       for(int i=0;i<n;i++){
37          scanf("%lf%lf",&x[i],&y[i]);
38       }
39       double minnn=inf;
40       for(int i=0;i<n;i++){
41          for(int j=i+1;j<n;j++){
42             mp[i][j]=cal(i,j);
43             if(minnn>mp[i][j]){
44                minnn=mp[i][j];
45             }
46          }
47       }
48       int ans=0;
49       for(int i=0;i<n;i++){
50          for(int j=i+1;j<n;j++){
51             if(mp[i][j]==minnn){
52                ans++;
53             }
54          }
55       }
56       if(ans==n){
57          printf("YES\n");
58       }else{
59          printf("NO\n");
60       }
61    }
62     return 0;
63 }
View Code

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值