《编程之美》读书笔记02: 1.3 一摞烙饼的排序
问题:
星期五的晚上,一帮同事在希格玛大厦附近的“硬盘酒吧”多喝了几杯。程序员多喝了几杯之后谈什么呢?自然是算法问题。有个同事说:“我以前在餐馆打工,顾客经常点非常多的烙饼。店里的饼大小不一,我习惯在到达顾客饭桌前,把一摞饼按照大小次序摆好——小的在上面,大的在下面。由于我一只手托着盘子,只好用另一只手,一次抓住最上面的几块饼,把它们上下颠倒个个儿,反复几次之后,这摞烙饼就排好序了。我后来想,这实际上是个有趣的排序问题:假设有n块大小不一的烙饼,那最少要翻几次,才能达到最后大小有序的结果呢?”
你能否写出一个程序,对于n块大小不一的烙饼,输出最优化的翻饼过程呢?
n个烙饼经过翻转后的所有状态可组成一棵树。寻找翻转最少次数,相当于在树中搜索层次最低的某个节点。
由于每层的节点数呈几何数量级增长,在n较大时,使用广度优先遍历树,可能没有足够的内存来保存中间结果(考虑到每层的两个节点,可以通过旋转,移位等操作互相转换,也许每层的状态可以用一个函数来生成,这时可以采用广度优先方法),因而采用深度优先。但这棵树是无限深的,必须限定搜索的深度(即最少翻转次数的上限值),当深度达到该值时不再继续往下搜索。最少翻转次数,必然小等于任何一种翻转方案所需的翻转次数,因而只要构造出一种方案,取其翻转次数即可做为其初始值。最简单的翻转方案就是:对最大的未就位的烙饼,将其翻转,再找到最终结果中其所在的位置,翻转一次使其就位。因此,对编号在n-1和2之间的烙饼,最多翻转了2*(n-2)次,剩下0和1号烙饼最多翻转1次,因而最少翻转次数的上限值是:2*(n-2)+1=2*n-3(从网上可搜索到对该上限值最新研究结果:上限值为18/11*n),当然,最好还是直接计算出采用这种方案的翻转次数做为初始值。
减少遍历次数:
1 减小“最少翻转次数上限值”的初始值,采用前面提到的翻转方案,取其翻转次数为初始值。对书中的例子{3,2,1,6,5,4,9,8,7,0},初始值可以取10。
2 避免出现已处理过的状态一定会减少遍历吗?答案是否定的,深度优先遍历,必须遍历完一个子树,才能遍历下一个子树,如果一个解在某层比较靠后位置,若不允许处理已出现过的状态时,可能要经过很多次搜索,才能找到这个解,但允许处理已出现过的状态时,可能会很快找到这个解,并减小“最少翻转次数的上限值”,使更多的分支能被剪掉,反而能减少遍历的节点数。比如说,两个子树A、B,搜索子树A,100次后可得到一个对应翻转次数为20的解,搜索子树B,20次后可得到翻转次数为10的解,不允许处理已出现过的状态,就会花100次遍历完子树A后,才开始遍历B,但允许翻转回上一次状态,搜索会在A、B间交叉进行,就可能只要70次找到子树B的那个解(翻转次数为10+2=12),此时,翻转次数上限值比较小,可忽略更多不必要的搜索。以书中的{3,2,1,6,5,4,9,8,7,0}为例,按程序(1.3_pancake_1.cpp),不允许翻转回上次状态时需搜索195次,而允许翻转回上次状态时只要搜索116次。
3 如果最后的几个烙饼已经就位,只须考虑前面的几个烙饼。对状态(0,1,3,4,2,5,6),编号为5和6的烙饼已经就位,只须考虑前5个烙饼,即状态(0,1,3,4,2)。如果一个最优解,从某次翻转开始移动了一个已经就位的烙饼,且该烙饼后的所有烙饼都已经就位,那么对这个解法,从这次翻转开始得到的一系列状态,从中移除这个烙饼,可得到一系列新的状态。必然可以设计出一个新的解法对应这系列新的状态,而该解法所用的翻转次数不会比原来的多。
4 估计每个状态还需要翻转的最少次数(即下限值),加上当前的深度,如果大等于上限值,就无需继续遍历。这个下限值可以这样确定:从最后一个位置开始,往前找到第一个与最终结果位置不同的烙饼编号(也就是说排除最后几个已经就位的烙饼),从该位置到第一个位置,计算相邻的烙饼的编号不连续的次数,再加上1。每次翻转最多只能使不连续的次数减少1,但很多人会忽略掉这个情况:最大的烙饼没有就位时,必然需要一次翻转使其就位,而这次翻转却不改变不连续次数。(可以在最后面增加一个更大的烙饼,使这次翻转可以改变不连续数。)如:对状态(0,1,3,4,2,5,6)等同于状态(0,1,3,4,2),由于1、3和4、2不连续,因而下限值为2+1=3。下限值也可以这样确定:在最后面增加一个比所有烙饼都大的已经就位的烙饼,然后再计算不连续数。如:(0,1,3,4,2),可以看作(0,1,3,4,2,5),1和3 、4和2 、2和5这三个不连续,下限值为3。
5多数情况下,翻转次数的上限值越大,搜索次数就越多。可以采用贪心算法,通过调整每次所有可能翻转的优先顺序,尽快找到一个解,从而减少搜索次数。比如,优先搜索使“下限值”减少的翻转,其次是使“下限值”不变的翻转,最后才搜索使“下限值”增加的翻转。对“下限值”不变的翻转,还可以根据其下次的翻转对“下限值”的影响,再重新排序。由于进行了优先排序,翻转回上一次状态能减少搜索次数的可能性得到进一步降低。
6 其它剪枝方法:
假设进行第m次翻转时,“上限值”为min_swap。
如果翻转某个位置的烙饼能使所有烙饼就位(即翻转次数刚好为m),则翻转其它位置的烙饼,能得到的最少翻转次数必然大等m,因而这些位置都可以不搜索。
如果在某个位置的翻转后,“下限值”为k,并且 k+m>=min_swap,则对所有的使新“下限值”kk大等于k的翻转,都有 kk+m>=min_swap,因而都可以不搜索。该剪枝方法是对上面的“调整翻转优先顺序”的进一步补充。
另外,翻转某个烙饼时,只有两个烙饼位置的改变才对“下限值”有影响,因而可以记录每个状态的“下限值”,进行下一次翻转时,只须通过几次比较,就可以确定新状态的“下限值”。(判断不连续次数时,最好写成 -1<=x && x<=1, 而不是x==1 || x==-1。对于 int x; a<=x && x<=b,编译器可以将其优化为 unsigned (x-a) <= b-a。)
结果:
对书上的例子{3,2,1,6,5,4,9,8,7,0}:
| 翻转回上次状态 | 搜索函数被调用次数 | 翻转函数被调用次数 |
1.3_pancake_2 | 不允许 | 29 | 66 |
1.3_pancake_2 | 允许 | 33 | 74 |
1.3_pancake_1 | 不允许 | 195 | 398 |
1.3_pancake_1 | 允许 | 116 | 240 |
(这个例子比较特殊,代码1.3_pancake_2.cpp(与1.3_pancake_1.cpp的最主要区别在于,增加了对翻转优先顺序的判断, 代码下载),在不允许翻转回上次状态且取min_swap的初始值为2*10-2=18时,调用搜索函数29次,翻转函数56次)。
搜索顺序对结果影响很大,如果将1.3_pancake_2.cpp第152行:
for (int pos=1, last_swap=cake_swap[step++]; pos<size; ++pos){
这一行改为:
for (int pos=size-1, last_swap=cake_swap[step++]; pos>=1; --pos){
仅仅调整了搜索顺序,调用搜索函数次数由29次降到11次(对应的翻转方法:9,6,9,6,9,6),求第1个烙饼数到第10个烙饼数,所用的总时间也由原来的38秒降到21秒。)


#include < iostream >
#include < fstream >
#include < vector >
#include < algorithm >
#include < ctime >
using namespace std;
class Pancake{
public :
Pancake() {}
void print() const ;
void process(); // 显示最优解的翻转过程
int run( const int cake_arr[], int size, bool show = true );
void calc_range( int na, int nb);
private :
Pancake( const Pancake & );
Pancake & operator = ( const Pancake & );
inline bool init( const int cake_arr[], int & size);
void search_cake( int size, int step, int least_swap_old);
void reverse_cake( int index) { // 翻转0到index间的烙饼
++ count_reverse;
std::reverse( & cake[ 0 ], & cake[index + 1 ]);
}
bool next_search_cake( int pos, int size, int step, int least_swap)
{
if (least_swap + step >= get_min_swap()) return true ;
cake_swap[step] = pos;
reverse_cake(pos);
search_cake(size,step,least_swap);
reverse_cake(pos);
return false ;
}
int get_min_swap() const { return result.size();}
void output( int i, const std:: string & sep, int width) const {
cout.width(width);
cout << i << sep;
}
void output( const std:: string & sep, int width) const {
cout.width(width);
cout << sep;
}
vector < int > cake_old; // 要处理的原烙饼数组
vector < int > cake; // 当前各个烙饼的状态
vector < int > result; // 最优解中,每次翻转的烙饼位置
vector < int > cake_swap; // 每次翻转的烙饼位置
vector < int > cake_order; // 第step+1次翻转时,翻转位置的优先顺序
int min_swap_init; // 最优解的翻转次数初始值
int count_search; // search_cake被调用次数
int count_reverse; // reverse_cake被调用次数
};
void Pancake::print() const
{
int min_swap = get_min_swap();
if (min_swap == 0 ) return ;
cout << " minimal_swap initial: " << min_swap_init
<< " final: " << min_swap
<< " \nsearch/reverse function was called: " << count_search
<< " / " << count_reverse << " times\nsolution: " ;
for ( int i = 0 ; i < min_swap; ++ i) cout << result[i] << " " ;
cout << " \n\n " ;
}
void Pancake::process()
{
int min_swap = get_min_swap();
if (min_swap == 0 ) return ;
cake.assign(cake_old.begin(), cake_old.end());
int cake_size = cake_old.size();
const int width = 3 , width2 = 2 * width + 3 ;
output( " No. " , width2);
for ( int j = 0 ; j < cake_size; ++ j) output(j, " " ,width);
cout << " \n " ;
output( " old: " , width2);
for ( int j = 0 ; j < cake_size; ++ j) output(cake[j], " " ,width);
cout << " \n " ;
for ( int i = 0 ; i < min_swap; ++ i){
reverse_cake(result[i]);
output(i + 1 , " " ,width);
output(result[i], " : " ,width);
for ( int j = 0 ; j < cake_size; ++ j) output(cake[j], " " ,width);
cout << " \n " ;
}
cout << " \n\n " ;
}
bool Pancake::init( const int cake_arr[], int & size)
{
result.clear();
if (cake_arr == NULL) return false ;
cake_swap.resize(size * 2 );
cake_order.resize(size * size * 2 );
count_search = 0 ;
count_reverse = 0 ;
cake_old.assign(cake_arr,cake_arr + size);
// 去除末尾已就位的烙饼,修正烙饼数组大小。
while (size > 1 && size - 1 == cake_arr[size - 1 ]) -- size;
if (size <= 1 ) return false ;
cake.assign(cake_arr,cake_arr + size);
for ( int j = size - 1 ; ;) { // 计算一个解作为min_swap初始值。
while (j > 0 && j == cake[j]) -- j;
if (j <= 0 ) break ;
int i = j;
while (i >= 0 && cake[i] != j) -- i;
if (i != 0 ) {
reverse_cake(i);
result.push_back(i);
}
reverse_cake(j);
result.push_back(j);
-- j;
}
cake.assign(cake_arr,cake_arr + size); // 恢复原来的数组
cake.push_back(size); // 多放一个烙饼,避免后面的边界判断
cake_swap[ 0 ] = 0 ; // 假设第0步翻转的烙饼编号为0
min_swap_init = get_min_swap();
return true ;
}
int Pancake::run( const int cake_arr[], int size, bool show)
{
if ( ! init(cake_arr, size)) return 0 ;
int least_swap = 0 ;
// size = cake.size() - 1;
for ( int i = 0 ; i < size; ++ i)
if (cake[i] - cake[i + 1 ] + 1u > 2 ) ++ least_swap;
if (get_min_swap() != least_swap) search_cake(size, 0 , least_swap);
if (show) print();
return get_min_swap();
}
void Pancake::search_cake( int size, int step, int least_swap_old)
{
++ count_search;
while (size > 1 && size - 1 == ( int )cake[size - 1 ]) -- size; // 去除末尾已就位的烙饼
int * first = & cake_order[step * cake.size()];
int * last = first + size;
int * low = first, * high = first + size;
for ( int pos = size - 1 , last_swap = cake_swap[step ++ ]; pos > 0 ; -- pos){
if (pos == last_swap) continue ;
int least_swap = least_swap_old ;
if (cake[pos] - cake[pos + 1 ] + 1u <= 2 ) ++ least_swap;
if (cake[ 0 ] - cake[pos + 1 ] + 1u <= 2 ) -- least_swap;
if (least_swap + step >= get_min_swap()) continue ;
if (least_swap == 0 ) {
cake_swap[step] = pos;
result.assign( & cake_swap[ 1 ], & cake_swap[step + 1 ]);
return ;
}
// 根据least_swap值大小,分别保存pos值,并先处理使least_swap_old减小1的翻转
if (least_swap == least_swap_old) * low ++ = pos;
else if (least_swap > least_swap_old) *-- high = pos;
else next_search_cake(pos, size, step, least_swap);
}
// 再处理使least_swap_old不变的翻转
for ( int * p = first; p < low; p ++ )
if (next_search_cake( * p, size, step, least_swap_old)) return ;
// 最后处理使least_swap_old增加1的翻转
for ( int * p = high; p < last; p ++ )
if (next_search_cake( * p, size, step, least_swap_old + 1 )) return ;
}
void Pancake::calc_range( int na, int nb)
{
if (na > nb || na <= 0 ) return ;
clock_t ta = clock();
static std::vector < int > arr;
arr.resize(nb);
unsigned long long total_search = 0 ;
unsigned long long total_reverse = 0 ;
for ( int j = na; j <= nb; ++ j) {
for ( int i = 0 ; i < j; ++ i) arr[i] = i;
int max = 0 ;
unsigned long long count_s = 0 ;
unsigned long long count_r = 0 ;
clock_t tb = clock();
while (std::next_permutation( & arr[ 0 ], & arr[j])) {
int tmp = run( & arr[ 0 ],j, 0 );
if (tmp > max) max = tmp;
count_s += count_search;
count_r += count_reverse;
}
total_search += count_s;
total_reverse += count_r;
output(j, " " , 2 );
output(max, " time: " , 3 );
output(clock() - tb, " ms " , 8 );
cout << " search/reverse: " << count_s << " / " << count_r << " \n " ;
}
cout << " total search/reverse: " << total_search
<< " / " << total_reverse << " \n "
<< " time : " << clock() - ta << " ms\n " ;
}
int main()
{
int aa[ 10 ] = { 3 , 2 , 1 , 6 , 5 , 4 , 9 , 8 , 7 , 0 };
// int ab[10]={ 4,8,3,1,5,2,9,6,7,0};
// int ac[]={1,0, 4, 3, 2};
Pancake cake;
cake.run(aa, 10 );
cake.process();
// cake.run(ab,10);
// cake.process();
// cake.run(ac,sizeof(ac)/sizeof(ac[0]));
// cake.process();
cake.calc_range( 1 , 9 );
}
补充:
在网上下了《编程之美》“第6刷”的源代码,结果在编译时存在以下问题:
1 Assert 应该是 assert
2 m_arrSwap 未被定义,应该改为m_SwapArray
3 Init函数两个for循环,后一个没定义变量i,应该将i 改为 int i
另外,每运行一次Run函数,就会调用Init函数,就会申请新的内存,但却没有释放原来的内存,会造成内存泄漏。if(step + nEstimate > m_nMaxSwap) 这句还会造成后面对m_ReverseCakeArraySwap数组的越界访问,使程序不能正常运行。
书上程序的低效主要是由于进行剪枝判断时,没有考虑好边界条件,可进行如下修改:
1 if(step + nEstimate > m_nMaxSwap) > 改为 >=。
2 判断下界时,如果最大的烙饼不在最后一个位置,则要多翻转一次,因而在LowerBound函数return ret; 前插入一行:
if (pCakeArray[nCakeCnt-1] != nCakeCnt-1) ret++; 。
3 n个烙饼,翻转最大的n-2烙饼最多需要2*(n-2)次,剩下的2个最多1次,因而上限值为2*n-3,因此,m_nMaxSwap初始值可以取2*n-3+1=2*n-2,这样每步与m_nMaxSwap的判断就可以取大等于号。
4 采用书上提到的确定“上限值”的方法,直接构建一个初始解,取其翻转次数为m_nMaxSwap的初始值。
1和2任改一处,都能使搜索次数从172126降到两万多,两处都改,搜索次数降到3475。若再改动第3处,搜索次数降到2989;若采用4的方法(此时初始值为10),搜索次数可降到1045。