leetcode:Best Time to Buy and Sell Stock II

本文介绍了一种简化的方法来计算股票无限次买卖的最大利润,通过直接统计每段上升序列的最大差值来实现。与最佳买卖时机问题相比,本文讨论的场景允许多次买卖,并通过动态规划优化计算过程。

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times). However, you may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).


羞愧啊,根本不用那么复杂!直接统计每段上升序列的最大差就能够了

class Solution {
public:
    int maxProfit(vector<int> &prices) {
        if( prices.size() < 2)
            return 0;
        int max_profit = 0;
        for( int i = 1; i < prices.size(); ++i){
            if( prices[i] - prices[i-1] > 0)
                max_profit += prices[i] - prices[i-1];
        }
        return max_profit;
    }
};


(之前的做法,想太多了)

和best time to buy and sell stock的差别是同意多次买入和卖出,dp[i]保存当前能获得的最低股价

那么max_profit就须要累加prices[i]-dp[i],这就会出现反复加的情况,比方prices 1 2 4相应dp 1 1 1,会反复加,所以每次算dp[i]要修正,取最大的prices[j]-dp[j],其余的prices[j]=dp[j]

class Solution {
public:
    int maxProfit(vector<int> &prices) {
        if( prices.size() < 2)
            return 0;
        vector< int> dp( prices.size(), INT_MAX);
        dp[0] = prices[0];
        for( int i = 1; i < prices.size(); ++i){
            int mini = prices[i];
            for( int j = i - 1; j >= 0; --j){
                if(prices[i] - dp[j] > prices[j] - dp[j]){//保证prices[i]-dp[i]最大
                    mini = dp[j];
                    dp[j] = prices[j];
                    if( prices[j] == dp[j])
                        break;
                }
                else{
                    break;
                }
            }
            dp[i] = mini;
        }
        int max_profit = 0;
        for( int i = 0; i < prices.size(); ++i){
            max_profit = prices[i] - dp[i] > 0 ? max_profit + prices[i] - dp[i] : max_profit;
        }
        return max_profit;
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值