问题:
You are given n
pairs of numbers. In every pair, the first number is always smaller than the second number.
Now, we define a pair (c, d)
can follow another pair (a, b)
if and only if b < c
. Chain of pairs can be formed in this fashion.
Given a set of pairs, find the length longest chain which can be formed. You needn't use up all the given pairs. You can select pairs in any order.
Example 1:
Input: [[1,2], [2,3], [3,4]] Output: 2 Explanation: The longest chain is [1,2] -> [3,4]
Note:
- The number of given pairs will be in the range [1, 1000].
解决:
① 贪心算法。对于排序:
以 (8,9) (10,11) (1,100)为例:
按照数组第一个元素排序: (1,100),(8,9), (10,11) 。不能通过比较 [i][end] 和 [i+1][begin] 来增加链。
而如果按照数组第二个元素排序: (8,9) ,(10,11), (1,100),那么则可以通过比较 [i][end] 和 [i+1][begin] 来增加链。
class Solution {//35ms
public int findLongestChain(int[][] pairs) {
Arrays.sort(pairs, new Comparator<int[]>() {//升序
@Override
public int compare(int[] o1, int[] o2) {
return o1[1] - o2[1];
}
});
int res = 0;
int pre = Integer.MIN_VALUE;
for (int[] pair : pairs){
if (pair[0] > pre){
res ++;
pre = pair[1];
}
}
return res;
}
}
② 求最长的链对,可以将每个pair按照第一个数字排序。dp[i]储存的是从i结束的链表长度最大值。首先初始化每个dp[i]为1。然后对于每个dp[i],找在 i 前面的索引 0~j,如果存在可以链接在i 前面的数组,且加完后大于dp[i]之前的值,那么则在dp[j]的基础上+1.
class Solution { //89ms
public int findLongestChain(int[][] pairs) {
//Arrays.sort(pairs, (a, b) -> (a[0] - b[0]));jdk1.8使用λ表达式
Arrays.sort(pairs, new Comparator<int[]>() {//升序
@Override
public int compare(int[] o1, int[] o2) {
return o1[0] - o2[0];
}
});
int max = 0;
int len = pairs.length;
int[] dp = new int[len];
Arrays.fill(dp,1);
int i = 0;
int j = 0;
for (i = 1;i < len;i ++){
for (j = 0;j < i;j ++){
if (pairs[j][1] < pairs[i][0] && dp[i] < dp[j] + 1){
dp[i] = dp[j] + 1;
}
}
}
for (i = 0;i < len;i ++){
if (max < dp[i]){
max = dp[i];
}
}
return max;
}
}