【论文笔记】使用SPSS 进行 T Test (T检验)

本文详细介绍了如何使用SPSS进行T Test,包括单总体t检验和双总体t检验。通过实例分析了单个样本t检验,如难产儿出生体重与一般婴儿的比较,结果显示在0.05的显著性水平下,两者差异无统计学意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

从具有t值来看,你是在进行T检验。T检验是平均值的比较方法。 
T检验分为三种方法:
1. 单一样本t检验(One-sample t test),是用来比较一组数据的平均值和一个数值有无差异。例如,你选取了5个人,测定了他们的身高,要看这五个人的身高平均值是否高于、低于还是等于1.70m,就需要用这个检验方法。

2. 配对样本t检验(paired-samples t test),是用来看一组样本在处理前后的平均值有无差异。比如,你选取了5个人,分别在饭前和饭后测量了他们的体重,想检测吃饭对他们的体重有无影响,就需要用这个t检验。
注意,配对样本t检验要求严格配对,也就是说,每一个人的饭前体重和饭后体重构成一对。

3. 独立样本t检验(independent t test),是用来看两组数据的平均值有无差异。比如,你选取了5男5女,想看男女之间身高有无差异,这样,男的一组,女的一组,这两个组之间的身高平均值的大小比较可用这种方法。
总之,选取哪种t检验方法是由你的数据特点和你的结果要求来决定的。

t检验会计算出一个统计量来,这个统计量就是t值,
spss根据这个t值来计算sig值。因此,你可以认为t值是一个中间过程产生的数据,不必理他,你只需要看sig值就可以了。sig值是一个最终值,也是t检验的最重要的值。

sig值的意思就是显著性(significance),它的意思是说,平均值是在百分之几的几率上相等的。
一般将这个sig值与0.05相比较,如果它大于0.05,说明平均值在大于5%的几率上是相等的,而在小于95%的几率上不相等。我们认为平均值相等的几率还是比较大的,说明差异是不显著的,从而认为两组数据之间平均值是相等的。
如果它小于0.05,说明平均值在小于5%的几率上是相等的,而在大于95%的几率上不相等。我们认为平均值相等的几率还是比较小的,说明差异是显著的,从而认为两组数据之间平均值是不相等的。

总之,只需要注意sig值就可以了。

用来算两组数的差别大小
只要是一种叫做p-value的
就是说假如你测定一个实验的p-value是5%
也就是说你有95%的信心确定这个实验它是正确的

在正规的实验里 只有当p-value小于5%的时候这个实验才算是可以在报告中提及
数值越小代表
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值