Elementary Methods in Number Theory Exercise 1.5.9

本文证明了除了2和3以外的所有质数,在被6整除时余数为1或5,并进一步证明了存在无限多个形式为6k+5的质数。通过构造特定数列并利用其性质,展示了结论的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Show that every prime number except 2 and 3 has a remainder of 1 or 5 when divided by 6.Prove that there are infinitely many prime numbers whose remainder is 5 when divided by 6.


Proof:

(1)Simple.


(2)Suppose there are only finite number of primes whose remainder is 5 when divided by 6,they are
\begin{equation}
p_1,p_2,\cdots,p_n
\end{equation}
It is easy to verify that
\begin{equation}
p_1p_2\cdots p_n\equiv 1\mod 6
\end{equation}
Then let's see
\begin{equation}
p_1p_2\cdots p_n+4
\end{equation}
It is easy to verify that this is a new prime of the form $6k+5$,which leads to absurdity.So there are infinitely many prime of the form $6k+5$

转载于:https://www.cnblogs.com/yeluqing/archive/2012/12/02/3828028.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值