操作系统实验一:处理器管理

本文深入探讨了处理机调度的重要性和工作原理,详细介绍了FCFS、SJF、RR、HRRN和MLFQ等进程调度算法。通过模拟实验,展示了不同算法在进程调度中的应用,分析了CPU利用率、平均周转时间和平均带权周转时间等关键指标。
一、实验目的

1)加深对处理机调度的作用和工作原理的理解。

2)进一步认识并发执行的实质。

二、实验要求:

本实验要求用高级语言,模拟在单处理器情况下,采用多个调度算法,对N个进程进行进程调度。语言自选。

并完成实验报告。

三、实验内容:

在采用多道程序设计的系统中,往往有若干个进程同时处于就绪状态。

当就绪状态进程个数大于处理器数时,就必须依照某种策略来决定哪些进程优先占用处理器。

  1. 进程及进程队列的表示。
  2. 处理器调度算法:FCFS,SJF,RR,HRRN,MLFQ等
  3. 跟踪进程状态的转化
  4. 输出:系统中进程的调度次序,计算CPU利用率,平均周转时间和平均带权周转时间

四、实验过程与结果

1.FCFS:

1.1算法思想:按照作业进入系统后备作业队列的先后次序来挑选作业,先进入系统的作业将优先被挑选进入内存,创建用户进程,分配所需资源,然后移入就绪队列。

1.2算法设计:

2.SJF:

2.1算法思想:以进入系统作业所需要求的CPU运行时间的长短为标准,总是选取预计计算时间最短的作业投入运行。

2.2算法设计:

 

 

3.RR:

3.1算法思想:调度程序每次把CPU分配给就绪队列首进程/线程使用规定的时间间隔,称为时间片,通常为10ms~200ms,就绪队列中的每个进程/线程轮流的运行一个时间片,当时间片消耗尽时就强迫当前运行进程/线程让出处理器,转而排列到就绪队列尾部,等候下一轮调度。

3.2算法设计:

 

转载于:https://www.cnblogs.com/wscblog/p/10710965.html

3、详细设计(各个模块的算法实现,即各个用户自己的头文件) */首先定义头结点headnode来标志队首*/ #include<stdio.h> #include<stdlib.h> #include<iostream> 4、代码清单(包含头文件<用命令括进去即可#include……>和主函数) #include<stdio.h> #include<iostream> using namespace std; #define MAX 10 struct task_struct { char name[10]; /*进程名称*/ int number; /*进程编号*/ float come_time; /*到达时间*/ float run_begin_time; /*开始运行时间*/ float run_time; /*运行时间*/ float run_end_time; /*运行结束时间*/ int priority; /*优先级*/ int order; /*运行次序*/ int run_flag; /*调度标志*/ }tasks[MAX]; int counter; /*实际进程个数*/ int fcfs(); /*先来先服务*/ int ps(); /*优先级调度*/ int sjf(); /*短作业优先*/ int hrrn(); /*响应比高优先*/ int pinput(); /*进程参数输入*/ int poutput(); /*调度结果输出*/ int main() { int option; pinput(); printf("请选择调度算法(0~4):\n"); printf("1.先来先服务\n"); printf("2.优先级调度\n"); printf(" 3.短作业优先\n"); printf(" 4.响应比高优先\n"); printf(" 0.退出\n"); scanf("%d",&option); switch (option) { case 0: printf("运行结束。\n"); break; case 1: printf("对进程按先来先服务调度。\n\n"); fcfs(); poutput(); break; case 2: printf("对进程按优先级调度。\n\n"); ps(); poutput(); break; case 3: printf("对进程按短作业优先调度。\n\n"); sjf(); poutput(); break; case 4: printf("对进程按响应比高优先调度。\n\n"); hrrn(); poutput(); break; } } int fcfs() /*先来先服务*/ { float time_temp=0; int i; int number_schedul; time_temp=tasks[0].come_time; for(i=0;i<counter;i++) { tasks[i].run_begin_time=time_temp; tasks[i].run_end_time=tasks[i].run_begin_time+tasks[i].run_time; tasks[i].run_flag=1; time_temp=tasks[i].run_end_time; number_schedul=i; tasks[number_schedul].order=i+1; } return 0; } int ps() /*优先级调度*/ { float temp_time=0; int i=0,j; int number_schedul,temp_counter; int max_priority; max_priority=tasks[i].priority; j=1; while ((j<counter)&&(tasks[i].come_time==tasks[j].come_time)) { if (tasks[j].priority>tasks[i].priority) { max_priority=tasks[j].priority; i=j; } j++; } /*查找第个被调度的进程*/ /*对第个被调度的进程求相应的参数*/ number_schedul=i; tasks[number_schedul].run_begin_time=tasks[number_schedul].come_time; tasks[number_schedul].run_end_time=tasks[number_schedul].run_begin_time+tasks[number_schedul].run_time; tasks[number_schedul].run_flag=1; temp_time=tasks[number_schedul].run_end_time; tasks[number_schedul].order=1; temp_counter=1; while (temp_counter<counter) { max_priority=0; for(j=0;j<counter;j++) { if((tasks[j].come_time<=temp_time)&&(!tasks[j].run_flag)) if (tasks[j].priority>max_priority) { max_priority=tasks[j].priority; number_schedul=j; } } /*查找下个被调度的进程*/ /*对找到的下个被调度的进程求相应的参数*/ tasks[number_schedul].run_begin_time=temp_time; tasks[number_schedul].run_end_time=tasks[number_schedul].run_begin_time+tasks[number_schedul].run_time; tasks[number_schedul].run_flag=1; temp_time=tasks[number_schedul].run_end_time; temp_counter++; tasks[number_schedul].order=temp_counter; }return 0; } int sjf() /*短作业优先*/ { float temp_time=0; int i=0,j; int number_schedul,temp_counter; float run_time; run_time=tasks[i].run_time; j=1; while ((j<counter)&&(tasks[i].come_time==tasks[j].come_time)) { if (tasks[j].run_time<tasks[i].run_time) { run_time=tasks[j].run_time; i=j; } j++; } /*查找第个被调度的进程*/ /*对第个被调度的进程求相应的参数*/ number_schedul=i; tasks[number_schedul].run_begin_time=tasks[number_schedul].come_time; tasks[number_schedul].run_end_time=tasks[number_schedul].run_begin_time+tasks[number_schedul].run_time; tasks[number_schedul].run_flag=1; temp_time=tasks[number_schedul].run_end_time; tasks[number_schedul].order=1; temp_counter=1; while (temp_counter<counter) { for(j=0;j<counter;j++) { if((tasks[j].come_time<=temp_time)&&(!tasks[j].run_flag)) { run_time=tasks[j].run_time;number_schedul=j;break;} } for(j=0;j<counter;j++) { if((tasks[j].come_time<=temp_time)&&(!tasks[j].run_flag)) if(tasks[j].run_time<run_time) {run_time=tasks[j].run_time; number_schedul=j; } } /*查找下个被调度的进程*/ /*对找到的下个被调度的进程求相应的参数*/ tasks[number_schedul].run_begin_time=temp_time; tasks[number_schedul].run_end_time=tasks[number_schedul].run_begin_time+tasks[number_schedul].run_time; tasks[number_schedul].run_flag=1; temp_time=tasks[number_schedul].run_end_time; temp_counter++; tasks[number_schedul].order=temp_counter; }return 0; } int hrrn() /*响应比高优先*/ { int j,number_schedul,temp_counter; float temp_time,respond_rate,max_respond_rate; /*第个进程被调度*/ tasks[0].run_begin_time=tasks[0].come_time; tasks[0].run_end_time=tasks[0].run_begin_time+tasks[0].run_time; temp_time=tasks[0].run_end_time; tasks[0].run_flag=1; tasks[0].order=1; temp_counter=1; /*调度其他进程*/ while(temp_counter<counter) { max_respond_rate=0; for(j=1;j<counter;j++) { if((tasks[j].come_time<=temp_time)&&(!tasks[j].run_flag)) { respond_rate=(temp_time-tasks[j].come_time)/tasks[j].run_time; if (respond_rate>max_respond_rate) { max_respond_rate=respond_rate; number_schedul=j; } } } /*找响应比高的进程*/ tasks[number_schedul].run_begin_time=temp_time; tasks[number_schedul].run_end_time=tasks[number_schedul].run_begin_time+tasks[number_schedul].run_time; temp_time=tasks[number_schedul].run_end_time; tasks[number_schedul].run_flag=1; temp_counter+=1; tasks[number_schedul].order=temp_counter; } return 0; } int pinput() /*进程参数输入*/ { int i; printf("please input the process counter:\n"); scanf("%d",&counter); for(i=0;i<counter;i++) { printf("******************************************\n"); printf("please input the process of %d th :\n",i+1); printf("please input the name:\n"); scanf("%s",tasks[i].name); printf("please input the number:\n"); scanf("%d",&tasks[i].number); printf("please input the come_time:\n"); scanf("%f",&tasks[i].come_time); printf("please input the run_time:\n"); scanf("%f",&tasks[i].run_time); printf("please input the priority:\n"); scanf("%d",&tasks[i].priority); tasks[i].run_begin_time=0; tasks[i].run_end_time=0; tasks[i].order=0; tasks[i].run_flag=0; } return 0; } int poutput() /*调度结果输出*/ { int i; float turn_round_time=0,f1,w=0; printf("name number come_time run_time run_begin_time run_end_time priority order turn_round_time\n"); for(i=0;i<counter;i++) { f1=tasks[i].run_end_time-tasks[i].come_time; turn_round_time+=f1; w+=(f1/tasks[i].run_time); printf(" %s, %d, %5.3f, %5.3f, %5.3f, %5.3f, %d, %d, %5.3f\n",tasks[i].name,tasks[i].number,tasks[i].come_time,tasks[i].run_time,tasks[i].run_begin_time,tasks[i].run_end_time,tasks[i].priority,tasks[i].order,f1); } printf("average_turn_round_timer=%5.2f\n",turn_round_time/counter); printf("weight_average_turn_round_timer=%5.2f\n",w/counter); return 0; }
实现了如下四种调度算法的模拟: (1)时间片轮转调度 (2)优先数调度 (3)最短进程优先 (4)最短剩余时间优先 模拟过程使用了JProgressBar作为进程状态条,更为直观地观察到每个进程的执行状态。 程序用户说明: 1、在上图标号1处输入要创建随机进程的个数,仅可输入正数,非正数会有相关提示。然后点击标号2处的“创建进程”按钮,随进创建的进程显示在程序界面的中央窗口,如标号3所示。 2、创建好随机进程后,在标号4的单选框选择将要模拟执行的调度算法,然后点击标号5处的“开始模拟”,程序开始执行。标号3的列表会显示相应的调度变化。 3、模拟过程中,可以继续添加新的进程,操作同上。 4、 个算法模拟执行完毕之后,可以点击标号6的“复位”按钮,可以重置列表的内容为程序模拟运行前的内容。复位成功后,可以继续选择其他调度算法进行模拟。 5、标号7显示为程序模拟过程中的时间,从1秒开始累计。 6、点击标号8的“清空”按钮,可以清空类别的进程,以便程序的下次执行。 题目要求: 题目四 单处理器系统的进程调度 、 课 程 设 计 目 的 1. 加深对进程概念的理解, 明确进程和程序的区别。 2. 深入了解系统如何组织进程、 创建进程。 3. 进步 认识如何实现处理器调度。 二 、 课 程 设 计 内 容 编写程序完成单处理器系统中的进程调度, 要求实现时间片轮转、 优先数、 最短进程优 先和最短剩余时间优先四种调度算法。 实验具体包括: 首先确定进程控制块的内容, 进程控 制块的组成方式; 然后完成进程创建原语和进程调度原语; 最后编写主函数对所作工作进行 测试。 模拟程序只对你所设置的“ 虚拟 PCB” 进行相应的调度模拟操作, 即每发生“ 调度” 时, 显示出当前运行进程的“ 进程标识符”、“ 优先数”、“ 剩余运行时间” 等, 而不需要对系 统中真正的 PCB 等数据进行修改。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值