每日一个机器学习算法——正则化

数据拟合与模型选择:过拟合与欠拟合的解决方案

在对数据进行拟合,学习模型的过程中,会出现以下情况:

1)high variance, overfitting.过拟合

2)high bias, underfiiting.欠拟合

过拟合出现的原因

1)太多的特征。

2)过少的训练数据。

如何解决?

1)减少特征数

2)模型选择算法(model selection algorithm)

3)正则化:保留特征参数,但尽可能减小其幅值为0。

 

lambuda为正则化参数:看做是一个tradeoff。用于平衡以下两项

1)更好的适应模型

2)将特征的系数尽可能变小

此参数过大,则会出现underfitting. 过小则会出现overfitting.

如何选择正则化参数?后续章节将会论述。

转载于:https://www.cnblogs.com/ShaneZhang/p/3937776.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值