数学图形(1.36)曳物线

本文深入探讨了曳物线的概念,通过参数方程揭示其几何特性,并阐述了如何确定其渐近线。利用数学工具如极限函数帮助理解曲线的动态性质,提供了一个清晰的视觉化解释。

曳物线,从曲线C上某一动点P的切线与某一定直线l的交点Q到点P的线段长恒为定值,则称曲线C为曳物线(tractrix)。直线l为其渐近线。

写法1:

vertices = 1000

t = from (-2*PI) to (2*PI)
x = 2/[E^t+E^(-t)]
y = t-tanh(t)

x = limit(x, -20, 20)
y = limit(y, -20, 20)

写法2:

vertices = 1000

t = from (-2*PI) to (2*PI)
x = sech(t)
y = t-tanh(t)

x = limit(x, -20, 20)
y = limit(y, -20, 20)

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值