算术平均、几何平均、调和平均、平方平均和移动平均

本文介绍了算术平均、几何平均、调和平均、平方平均和移动平均的概念及其应用场景。算术平均是最基本的平均数,几何平均用于比率和指数的平均,调和平均常用于计算平均速率,平方平均常用于统计中的标准差,而移动平均则是分析趋势的工具。每种平均数在不同场合有不同的优势和适用性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文内容

  • 算术平均
  • 几何平均
  • 调和平均
  • 平方平均
  • 移动平均
  • 参考资料

算术平均、几何平均、调和平均、平方平均和移动平均跟计算编程有什么关系:Just One Word,不能只会算术平均数,还有其他很多选择,以及不同场景使用不同的平均数。

算术平均


算术平均(Arithmetic mean)是最基本、最常用的一种平均指标,描述数据集中趋势的一个统计指标。

计算公式为:

clip_image002[4]

即,n 个数据相加后除以 n。0 也记入。

统计学上,算术平均较中位数和众数更少受到随机因素影响, 但缺点是它极易受到极大极小值的影响。例如,有数组 (5, 7, 5, 4, 6, 7, 8, 5, 4, 7, 8, 6, 20),平均值是 7.1,但实际上大部分数据(10个)都不超过7,如果去掉 20,平均数为 6。

上面是简单算术平均,它只是加权算术平均的一种特殊形式。若原始数据,被分成 k 组,各组的值为 (x1,x2,...,xk),各组频率分别为 (f1,f2,...,fk),则加权算术平均数的计算公式为:

clip_image002

由公式可以看出,加权算术平均数同时受到两个因素的影响,一个是各组数值的大小 xi,另一个是各组分布频数 fi。在数值不变的情况下,某组的频数越多,该组数值对平均数的作用就大,反之,越小。

算术平均可以用来反映一组数据的一般情况,也可以对不同组的数据进行比较。平均数可以直观、简明的表示一组数据,所以,在日常生活中经常用到,如平均速度、平均身高、平均产量、平均成绩等等。算术平均主要适用于数值型数据,不适用于品质数据。

几何平均


几何平均(Geometric mean),是另一种计算平均值的方法。对几何平均,也可以像算术平均一样,做加权的几何平均。

简单几何平均的计算公式为:

clip_image002[6]

即,n 个数据相乘后开 n 次方。其中,xi 都是正实数。

几何平均适用于对比率、指数等进行平均,主要用于平均增长(变化)率,对数正态分布。

算术-几何平均数

若有两个正实数 x 和 y,则它们的算术-几何平均数为,先计算这两个数的算术平均数,称为 a1;再计算它们的几何平均数,称为 g1

clip_image006

重复这个步骤,便得到了两个数列 (an) 和 (gn):

clip_image008

这两个数列都收敛于一个相同的数,这个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值