Instruction (hdu 5083)

本文介绍了一个计算机系统中指令与二进制编码之间的转换方法,包括六种基本指令的编码规则及如何进行正反向转换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Instruction

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 163    Accepted Submission(s): 46


Problem Description
Nowadays, Jim Green has produced a kind of computer called JG. In his computer, the instruction is represented by binary code. However when we code in this computer, we use some mnemonic symbols. For example, ADD R1, R2 means to add the number in register R1 and R2, then store the result to R1. But this instruction cannot be execute directly by computer, before this instruction is executed, it must be changed to binary code which can be executed by computer. Each instruction corresponds to a 16-bit binary code. The higher 6 bits indicates the operation code, the middle 5 bits indicates the destination operator, and the lower 5 bits indicates the source operator. You can see Form 1 for more details.
15 operation code(6 bits)109destination operator code(5 bits)54source operator code(5 bits)0Form 1


In JG system there are 6 instructions which are listed in Form 2.
instructionADD Ra,RbSUB Ra,RbDIV Ra,RbMUL Ra,RbMOVE Ra,RbSET RafunctionAdd the number in register Ra and Rb, then store the result to Ra.Subtract the number in register Ra to Rb, then store the result to Ra.Divide the number in register Ra by Rb, then store the result to Ra.Mulplicate the number in register Ra and Rb, then store the result to Ra.Move the number in register Rb to Ra.Set 0 to Ra.Form 2


Operation code is generated according to Form 3.
OperationADDSUBDIVMULMOVESETOperation code000001000010000011000100000101000110Form 3


Destination operator code and source operator code is the register code of the register which is related to.
There are 31 registers in total. Their names are R1,R2,R3…,R30,R31. The register code of Ri is the last 5 bits of the number of i in the binary system. For eaxample the register code of R1 is 00001, the register code of R2 is 00010, the register code of R7 is 00111, the register code of R10 is 01010, the register code of R31 is 11111.
So we can transfer an instruction into a 16-bit binary code easyly. For example, if we want to transfer the instruction ADD R1,R2, we know the operation is ADD whose operation code is 000001, destination operator code is 00001 which is the register code of R1, and source operator code is 00010 which is the register code of R2. So we joint them to get the 16-bit binary code which is 0000010000100010.
However for the instruction SET Ra, there is no source register, so we fill the lower 5 bits with five 0s. For example, the 16-bit binary code of SET R10 is 0001100101000000
You are expected to write a program to transfer an instruction into a 16-bit binary code or vice-versa.
 


Input
Multi test cases (about 50000), every case contains two lines.
First line contains a type sign, ‘0’ or ‘1’. 
‘1’ means you should transfer an instruction into a 16-bit binary code;
‘0’ means you should transfer a 16-bit binary code into an instruction.
For the second line.
If the type sign is ‘1’, an instruction will appear in the standard form which will be given in technical specification; 
Otherwise, a 16-bit binary code will appear instead.
Please process to the end of file.

[Technical Specification]
The standard form of instructions is 
ADD Ra,Rb
SUB Ra,Rb
DIV Ra,Rb
MUL Ra,Rb
MOVE Ra,Rb
SET Ra
which are also listed in the Form 2.
1a,b31
There is exactly one space after operation, and exactly one comma between Ra and Rb other than the instruction SET Ra. No other character will appear in the instruction.
 


Output
For type ‘0’,if the 16-bit binary code cannot be transferred into a instruction according to the description output “Error!” (without quote), otherwise transfer the 16-bit binary code into instruction and output the instruction in the standard form in a single line.
For type ‘1’, transfer the instruction into 16-bit binary code and output it in a single line.
 


Sample Input
1 ADD R1,R2 0 0000010000100010 0 1111111111111111
 


Sample Output
0000010000100010 ADD R1,R2 Error!
 题意:将二进制编码转化成字符命令,或将字符命令转化成二进制,共有六种命令,每种命令对应一个二进制编码,见题目表格;然后操作数有31种,分别是R1~R31,对应分别二进制00000~11111;其中要注意SET命令只有一个操作数,它的二进制编码最后5位全部写为0,若SET操作输入的二进制编码后五位不全是0,则输出Error!;不满足要求的命令也输出Error!,另外操作数不能是00000.
蛋疼的一题,考虑不周,比赛没做出来。。。。代码比较乱啊啊啊啊啊
代码:
  1 #include <iostream>
  2 #include <cstdio>
  3 #include <cstring>
  4 #include <algorithm>
  5 #include <cmath>
  6 #include <string>
  7 #include <map>
  8 #include <stack>
  9 #include <vector>
 10 #include <set>
 11 #include <queue>
 12 #pragma comment (linker,"/STACK:102400000,102400000")
 13 #define maxn 1005
 14 #define MAXN 2005
 15 #define mod 1000000009
 16 #define INF 0x3f3f3f3f
 17 #define pi acos(-1.0)
 18 #define eps 1e-6
 19 typedef long long ll;
 20 using namespace std;
 21 
 22 char ope[6][5]={{"ADD"},{"SUB"},{"DIV"},{"MUL"},{"MOVE"},{"SET"}};
 23 char code[6][7]={{"000001"},{"000010"},{"000011"},{"000100"},{"000101"},{"000110"}};
 24 char co[31][6]={ {"00001"} , {"00010"} , {"00011"} , {"00100"} , {"00101"} , {"00110"} , {"00111"} , {"01000"} , {"01001"} , {"01010"}
 25                , {"01011"} , {"01100"} , {"01101"} , {"01110"} , {"01111"} , {"10000"} , {"10001"} , {"10010"} , {"10011"} , {"10100"}
 26                , {"10101"} , {"10110"} , {"10111"} , {"11000"} , {"11001"} , {"11010"} , {"11011"} , {"11100"} , {"11101"} , {"11110"}
 27                , {"11111"}};
 28 char s1[5],s2[10];
 29 
 30 int OP(char str[])
 31 {
 32     for (int i=0;i<6;i++)
 33     {
 34         if (strcmp(str,ope[i])==0)
 35             return i;
 36     }
 37 }
 38 
 39 int main()
 40 {
 41     int n;
 42     while (~scanf("%d",&n))
 43     {
 44         if (n==1)
 45         {
 46             scanf("%s%s",s1,s2);
 47             int x=OP(s1);
 48             int dd=x;
 49             printf("%s",code[x]);
 50             x=s2[1]-'0';
 51             int ok=0;
 52             if (isdigit(s2[2]))
 53             {
 54                 ok=1;
 55                 x=x*10;
 56                 x=x+s2[2]-'0';
 57             }
 58             x--;
 59             printf("%s",co[x]);
 60             if (dd==5)
 61             {
 62                 printf("00000\n");
 63                 continue;
 64             }
 65             if (ok)
 66             {
 67                 x=s2[5]-'0';
 68                 if (isdigit(s2[6]))
 69                 {
 70                     x=x*10;
 71                     x=x+s2[6]-'0';
 72                 }
 73             }
 74             else
 75             {
 76                 x=s2[4]-'0';
 77                 if (isdigit(s2[5]))
 78                 {
 79                     x=x*10;
 80                     x=x+s2[5]-'0';
 81                 }
 82             }
 83             x--;
 84             printf("%s\n",co[x]);
 85         }
 86         else if (n==0)
 87         {
 88             scanf("%s",s1);
 89             int len=strlen(s1);
 90             int t=1;
 91             int sum=0;
 92             for (int i=5;i>=0;i--)
 93             {
 94                 int x=s1[i]-'0';
 95                 sum+=t*x;
 96                 t=t*2;
 97             }
 98             if (sum>6||sum==0)
 99             {
100                 printf("Error!\n");
101                 continue;
102             }
103             sum--;
104             int o=sum;
105             int flag=sum;
106 //            printf("%s",ope[sum]);
107             t=1;
108             sum=0;
109             for (int i=10;i>=6;i--)
110             {
111                 int x=s1[i]-'0';
112                 sum+=t*x;
113                 t=t*2;
114             }
115             if (sum>31||sum==0)
116             {
117                 printf("Error!\n");
118                 continue;
119             }
120             int aa=sum;
121 //            printf(" R%d",sum);
122             if (flag==5)
123             {
124                 t=1;
125                 sum=0;
126                 for (int i=15;i>=11;i--)
127                 {
128                     int x=s1[i]-'0';
129     //                printf("x=%d\n",x);
130                     sum+=t*x;
131                     t=t*2;
132                 }
133                 if (sum==0)
134                 {
135                     printf("%s",ope[o]);
136                     printf(" R%d",aa);
137                     printf("\n");
138                     continue;
139                 }
140                 else
141                 {
142                     printf("Error!\n");
143                     continue;
144                 }
145             }
146             t=1;
147             sum=0;
148             for (int i=15;i>=11;i--)
149             {
150                 int x=s1[i]-'0';
151 //                printf("x=%d\n",x);
152                 sum+=t*x;
153                 t=t*2;
154             }
155             if (sum>31||sum==0)
156             {
157                 printf("Error!\n");
158                 continue;
159             }
160             printf("%s",ope[o]);
161             printf(" R%d",aa);
162             printf(",R%d\n",sum);
163         }
164     }
165     return 0;
166 }
View Code

 

转载于:https://www.cnblogs.com/i8888/p/4051055.html

<think>我们被要求解释"VQA instruction"并按照格式输出问题和相关问题 VQA instruction 指的是视觉问答(Visual Question Answering)中的指令,通常用于指导模型如何根据图像内容回答问题。 在指令微调(Instruction Tuning)的背景下,VQA instruction 是指用于训练多模态模型(如图文模型)的指令数据,这些指令包含问题、图像和期望的答案形式。 回答结构: 1. 定义VQA instruction 2. 说明其作用 3. 举例说明 4. 相关技术(如多模态模型、指令微调) 5. 输出格式要求:最后必须包含“§§相关问题§§”并列出3-5个相关问题 注意:回答中可能包含代码示例(如果需要),但这里可能不需要代码,因为VQA instruction更偏向于概念。 由于用户的问题只有“VQA instruction”,我们需要给出简明扼要的解释。</think>### VQA Instruction详解 **VQA Instruction(视觉问答指令)** 是指用于指导多模态模型完成视觉问答任务的特定指令模板,其核心是通过结构化指令让模型理解如何结合图像和文本信息进行推理。以下是关键要点: #### 1. 核心作用与组成 ```python # 典型VQA指令结构 instruction = f""" {image} # 图像输入 请基于图片回答以下问题:{question} 要求: 1. 先描述图片关键内容 2. 给出问题答案 3. 解释推理逻辑 """ ``` - **三要素**: - **视觉输入**:图像/视频数据 - **文本指令**:明确的问题和回答要求 - **约束条件**:输出格式/推理步骤等限制 #### 2. 技术实现关键 | 模块 | 实现方式 | 示例模型 | |----------------|-----------------------------------|------------------------------| | **视觉编码器** | ViT/Swin Transformer | LLaVA-1.5, MiniGPT-v2 | | **对齐机制** | 跨模态注意力层 | Q-Former(BLIP-2) | | **指令微调** | 多轮对话格式数据集 | VQA-v2, GQA, VizWiz | | **推理控制** | Chain-of-Thought提示 | "分三步推理:1.识别物体..." | #### 3. 应用场景示例 ```python # 医疗VQA应用 instruction = """ [CT扫描图像] 问题:图中是否存在肺部结节? 要求: - 定位可疑区域坐标(x,y) - 判断恶性概率(低/中/高) - 引用医学特征依据 """ ``` **实际应用领域**: - 自动驾驶(道路场景理解) - 工业质检(缺陷检测问答) - 教育辅助(图解问题解答) - 无障碍技术(视觉障碍者辅助) #### 4. 性能优化方向 1. **减少幻觉**:通过对比学习约束图文对齐 2. **提升细粒度理解**:引入SAM分割模型辅助定位 3. **多轮对话**:记忆机制支持连续视觉对话 4. **计算效率**:蒸馏技术压缩模型(如TinyLLaVA) > **最新进展**:LLaVA-1.6使用<图像><问题><推理步骤>三元组指令,在ScienceQA数据集上准确率提升至92.5%
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值