2018中国大学生程序设计竞赛 - 网络选拔赛 hdu 6440 Dream 模拟

博客提及Java编程的时间和内存限制,时间限制为12000/6000 MS (Java/Others),内存限制为65536/65536 K (Java/Others),还给出总提交数1014和接受提交数200,以及转载链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Dream

Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1014    Accepted Submission(s): 200
Special Judge


Problem Description
Freshmen frequently make an error in computing the power of a sum of real numbers, which usually origins from an incorrect equation (m+n)p=mp+np, where m,n,p are real numbers. Let's call it ``Beginner's Dream''.

For instance, (1+4)2=52=25, but 12+42=1725. Moreover, 9+16−−−−−√=25−−√=5, which does not equal 3+4=7

Fortunately, in some cases when p is a prime, the identity
(m+n)p=mp+np

holds true for every pair of non-negative integers m,n which are less than p, with appropriate definitions of addition and multiplication.

You are required to redefine the rules of addition and multiplication so as to make the beginner's dream realized.

Specifically, you need to create your custom addition and multiplication, so that when making calculation with your rules the equation (m+n)p=mp+np is a valid identity for all non-negative integers m,n less than p. Power is defined as
ap={1,ap1a,p=0p>0


Obviously there exists an extremely simple solution that makes all operation just produce zero. So an extra constraint should be satisfied that there exists an integer q(0<q<p) to make the set {qk|0<k<p,kZ} equal to {k|0<k<p,kZ}. What's more, the set of non-negative integers less than p ought to be closed under the operation of your definitions.

Hint

Hint for sample input and output:
From the table we get 0+1=1, and thus (0+1)2=12=11=1. On the other hand, 02=00=012=11=102+12=0+1=1.
They are the same.
 

 

Input
The first line of the input contains an positive integer T(T30) indicating the number of test cases.

For every case, there is only one line contains an integer p(p<210), described in the problem description above. p is guranteed to be a prime.
 

 

Output
For each test case, you should print 2p lines of p integers.

The j-th(1jp) integer of i-th(1ip) line denotes the value of (i1)+(j1). The j-th(1jp) integer of (p+i)-th(1ip) line denotes the value of (i1)(j1).
 

 

Sample Input
1 2
 

 

Sample Output
0 1 1 0 0 0 0 1

 

分析:比赛的时候做出来的队友说的是数论结论题,比赛后我是按照题目意思直接模拟A掉的。。
  根据题目给出的数字p按照题目的意思我们可以得到一个2*p行,p列的矩阵
  其中1<=i<=p,1<=j<=p时:mapn[i][j] = ((i-1)+(j-1))%p
    p+1<=i<=2*p,1<=j<=p时:mapn[i][j] = ((i-1)*(j-1))%p
AC代码:
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <bitset>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define ls (r<<1)
#define rs (r<<1|1)
#define debug(a) cout << #a << " " << a << endl
using namespace std;
typedef long long ll;
const ll maxn = pow(2,10)+10;
const double eps = 1e-8;
const ll mod = 1e9 + 7;
const ll inf = 1e9;
const double pi = acos(-1.0);
ll mapn[2*maxn][maxn];
int main() {
    ll T, p;
    scanf("%lld",&T);
    while(T--) {
        memset(mapn,0,sizeof(mapn));
        scanf("%lld",&p);
        for( ll i = 1; i <= 2*p; i ++ ) {
            for( ll j = 1; j <= p; j ++ ) {
                if( i <= p ) {
                    mapn[i][j] = ((i-1)+(j-1))%p;
                } else {
                    mapn[i][j] = (i-1)*(j-1)%p;
                }
                if( j != p ) {
                    printf("%lld ",mapn[i][j]);
                } else {
                    printf("%lld\n",mapn[i][j]);
                }
            }
        }
    }
    return 0;
}

  

转载于:https://www.cnblogs.com/l609929321/p/9537614.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值