dp好题 玲珑杯 Expected value of the expression

本文介绍了一种使用概率动态规划的方法来解决特定形式的布尔表达式的期望值问题。通过分解表达式并考虑每个操作符消失的概率,文章提供了一个算法实现的例子,并详细解释了其工作原理。
152 - Expected value of the expression

Time Limit:2s Memory Limit:128MByte

Submissions:135Solved:65

DESCRIPTION

You are given an expression: A0O1A1O2A2OnAnA0O1A1O2A2⋯OnAn, where Ai(0in)Ai(0≤i≤n) represents number, Oi(1in)Oi(1≤i≤n) represents operator. There are three operators, &,|,^&,|,^, which means and,or,xorand,or,xor, and they have the same priority.

The ii-th operator OiOi and the numbers AiAi disappear with the probability of pipi.

Find the expected value of an expression.

INPUT
The first line contains only one integer n(1n1000)n(1≤n≤1000). The second line contains n+1n+1 integers Ai(0Ai<220)Ai(0≤Ai<220). The third line contains nn chars OiOi. The fourth line contains nn floats pi(0pi1)pi(0≤pi≤1).
OUTPUT
Output the excepted value of the expression, round to 6 decimal places.
SAMPLE INPUT
2
1 2 3
^ &
0.1 0.2
SAMPLE OUTPUT
2.800000
HINT
Probability = 0.1 * 0.2 Value = 1 Probability = 0.1 * 0.8 Value = 1 & 3 = 1
Probability = 0.9 * 0.2 Value = 1 ^ 2 = 3
Probability = 0.9 * 0.8 Value = 1 ^ 2 & 3 = 3
Expected Value = 0.1 * 0.2 * 1 + 0.1 * 0.8 * 1 + 0.9 * 0.2 * 3 + 0.9 * 0.8 * 3 = 2.80000
疏于补题,在这种学习环境下我也很难进步,要想做的足够优秀,本来就是要花时间和别人不一样啊
想下前两天有人讲状压dp,讲完那道题我应该会做了,因为我做过状压dp的题,但是换一道一定是不一定的啊,但是我觉得作为一个讲解者,我会倾向于向大家普及更多的知识,从而共同进步
闲话还是少说好了,等觉得真的有些难受的话就写些鸡汤,鼓励下正在努力的自己
概率dp,往常也和期望有关,什么是期望呢,饿了么霸王餐30个人付30元抽到20元的红包,我投资1元红包中奖期望是0.67元,这明摆着就是亏得生意啊,但是赌徒心理会致使我买下去,其实中奖了并不意味着省钱,往常中奖了就有会去吃顿好的
也就是所得分数*概率,把所有的可能都累城下,这个内容是高中学的,但是我可不可以合并同类项啊

E=(Σp1*(E1+X1)+Σp2*X2)/(1-Σp2)得到这样一个通项公式,这样能在中间就对数据进行处理

给你一个n+1个数进行n个位操作和他们出现的概率,求下这个表达式的期望

再结合这个题目的意思和运算符的一些问题,进行状态转移就好了

#include<bits/stdc++.h>
using namespace std;
int a[15000];
int num[15000];
char op[15000][3];
double p[15000];
double dp[15000][3];
int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        for(int i=0; i<=n; i++)scanf("%d",&num[i]);
        for(int i=1; i<=n; i++)scanf("%s",op[i]);
        for(int i=1; i<=n; i++)scanf("%lf",&p[i]);
        double ans=0;
        for(int i=0; i<=20; i++)
        {
            for(int j=0; j<=n; j++)
            {
                if((num[j]&(1<<i))>0)
                {
                    a[j]=1;
                }
                else a[j]=0;
            }
            memset(dp,0,sizeof(dp));
            dp[0][a[0]]=1;
            for(int j=1; j<=n; j++)
            {
                dp[j][0]=dp[j-1][0]*p[j];
                dp[j][1]=dp[j-1][1]*p[j];
                if(op[j][0]=='|')
                {
                    dp[j][0^a[j]]+=dp[j-1][0]*(1-p[j]);
                    dp[j][1]+=dp[j-1][1]*(1-p[j]);
                }
                else if(op[j][0]=='&')
                {
                        dp[j][0]+=dp[j-1][0]*(1-p[j]);
                        dp[j][0^a[j]]+=dp[j-1][1]*(1-p[j]);
                }
                else
                {
                        dp[j][0]+=dp[j-1][0^a[j]]*(1-p[j]);
                        dp[j][1]+=dp[j-1][a[j]^1]*(1-p[j]);
                }
            }
            ans+=(dp[n][1]*(1<<i));
        }
        printf("%.6f\n",ans);
    }
    return  0;
}

 

转载于:https://www.cnblogs.com/BobHuang/p/7325120.html

基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究”,介绍了利用Matlab代码实现配电网可靠性的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样与统计,通过模拟系统元件的故障与修复过程,评估配电网的关键可靠性指标,如系统停电频率、停电持续时间、负荷点可靠性等。该方法能够有效处理复杂网络结构与设备时序特性,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码与案例分析,便于复现和扩展应用。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行与可靠性分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠性评估中的基本原理与实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠性定量评估与优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定性因素进行深化研究。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值