学习笔记之Naive Bayes Classifier

本文介绍了朴素贝叶斯分类器的基本概念,一种基于贝叶斯定理的简单概率分类器,它假设特征之间相互独立。文章讨论了其在文本分类、自动医疗诊断等领域的应用,并强调了其高度可扩展性和线性时间复杂度的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Naive Bayes classifier - Wikipedia

  • https://en.wikipedia.org/wiki/Naive_Bayes_classifier
  • In machine learningnaive Bayes classifiers are a family of simple "probabilistic classifiers" based on applying Bayes' theorem with strong (naive) independence assumptions between the features.
  • Naive Bayes has been studied extensively since the 1960s. It was introduced (though not under that name) into the text retrieval community in the early 1960s,[1] and remains a popular (baseline) method for text categorization, the problem of judging documents as belonging to one category or the other (such as spam or legitimate, sports or politics, etc.) with word frequencies as the features. With appropriate pre-processing, it is competitive in this domain with more advanced methods including support vector machines.[2] It also finds application in automatic medical diagnosis.[3]
  • Naive Bayes classifiers are highly scalable, requiring a number of parameters linear in the number of variables (features/predictors) in a learning problem. Maximum-likelihood training can be done by evaluating a closed-form expression,[4]:718 which takes linear time, rather than by expensive iterative approximation as used for many other types of classifiers.
  • In the statistics and computer science literature, naive Bayes models are known under a variety of names, including simple Bayes and independence Bayes.[5] All these names reference the use of Bayes' theorem in the classifier's decision rule, but naive Bayes is not (necessarily) a Bayesian method.[4][5]

1.9. Naive Bayes — scikit-learn 0.20.3 documentation

  • https://scikit-learn.org/stable/modules/naive_bayes.html

Machine Learning with Python: Introduction Naive Bayes Classifier

  • https://www.python-course.eu/naive_bayes_classifier_introduction.php

贝叶斯、概率分布与机器学习 - 程序员数学之美

  • https://mp.weixin.qq.com/s/37D1sq-c9H89YV_mcV8BUQ
  • http://www.cnblogs.com/LeftNotEasy/archive/2010/09/27/1837163.html

朴素贝叶斯算法的优缺点 - 机器学习算法与自然语言处理

  • https://mp.weixin.qq.com/s/Oxfa6Xvqx5BCO46CMGZB-w
  • http://www.cnblogs.com/pinard/p/6069267.html

朴素贝叶斯算法原理小结 - 刘建平Pinard - 博客园

  • https://www.cnblogs.com/pinard/p/6069267.html

scikit-learn 朴素贝叶斯类库使用小结 - 刘建平Pinard - 博客园

  • https://www.cnblogs.com/pinard/p/6074222.html

转载于:https://www.cnblogs.com/pegasus923/p/10470230.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值