DeepMind发布《星际争霸 II》深度学习环境

DeepMind与暴雪合作开源了《星际争霸II》的机器学习平台SC2LE,提供了一个Python接口来与游戏引擎通信。该平台包括一系列迷你游戏及专业玩家的游戏重放数据集,用于训练神经网络预测游戏结果和玩家行为。通过Blizzard分数和特征层为AI提供信息,实现了《星际争霸II》的强化学习应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上个月,DeepMind和暴雪终于开源了《星际争霸II 》的机器学习平台。本文介绍了基于星际争霸II游戏的强化学习环境SC2LE(《星际争霸II 》学习环境)。

DeepMind发布《星际争霸 II》深度学习环境 | 2分钟读论文

论文描述《星际争霸II 》行动和奖励规范,并提供一个开源的Python界面,用于与游戏引擎进行通信。暴雪提供游戏输入输出的API,DeepMind又做了层基于Python的封装。

除了主要的游戏地图,他们提供了一套专注于《星际争霸II 》游戏不同元素的迷你游戏。对于主要的游戏地图,还提供了一个伴随专业玩家的游戏重播数据数据集。从该数据训练的神经网络的初始基线结果,预测游戏结果和玩家行为。

DeepMind发布《星际争霸 II》深度学习环境 | 2分钟读论文

文中使用了被称为Blizzard分数的一个中间分数,这个分数包含了一个对当前资源、等级以及单位和建筑的加权和,如果玩家赢得战斗而且管理好资源,这个分数就会单调增加,失败的时候,这个分数就会减少。此外,系统还使用了一系列的特征层为AI编码相关信息,比如地形高度、相机位置、屏幕中单位的血量以及各种其他信息。

最后,提出了应用于《星际争霸II 》的规范深强化学习的初始基线结果。DeepMind之后也会发布上百万帧的选手游戏记录,这对模拟环境研究也会有很大的帮助。

▷ 观看论文解读大概需要  6  分钟

学霸们还请自行阅读论文以获得更多细节

论文原址: https://arxiv.org/abs/1708.04782

Github: https://github.com/Blizzard/s2client 

雷锋网AI研习社出品系列短视频《 2 分钟论文 》,带大家用碎片时间阅览前沿技术,了解 AI 领域的最新研究成果。欢迎关注雷锋网雷锋字幕组专栏,获得更多AI知识~感谢志愿者对本期内容作出贡献。

DeepMind发布《星际争霸 II》深度学习环境 | 2分钟读论文




本文作者:雷锋字幕组
本文转自雷锋网禁止二次转载, 原文链接
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值