第三课-java线程池的使用

本文详细介绍了Java线程池的概念、核心组件ThreadPoolExecutor及其构造方法、线程池的实现原理和配置方法。同时,还列举了Java中常用的四种线程池类型及其实现方式。

在前面的文章中,我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题:

  如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的效率,因为频繁创建线程和销毁线程需要时间。

  那么有没有一种办法使得线程可以复用,就是执行完一个任务,并不被销毁,而是可以继续执行其他的任务?

  在Java中可以通过线程池来达到这样的效果。今天我们就来详细讲解一下Java的线程池,首先我们从最核心的ThreadPoolExecutor类中的方法讲起,然后再讲述它的实现原理,接着给出了它的使用示例,最后讨论了一下如何合理配置线程池的大小。

  以下是本文的目录大纲:

     一.java常见的四种线程池的使用

  二.Java中的ThreadPoolExecutor类

 三.深入剖析线程池实现原理

 四.如何合理配置线程池的大小 

java常见的四种线程池的使用

 java常见的四种线程池的使用,这个在Executors定义的非常清晰,我们看源码


package java.util.concurrent;
import java.util.*;
import java.util.concurrent.atomic.AtomicInteger;
import java.security.AccessControlContext;
import java.security.AccessController;
import java.security.PrivilegedAction;
import java.security.PrivilegedExceptionAction;
import java.security.PrivilegedActionException;
import java.security.AccessControlException;
import sun.security.util.SecurityConstants;
public class Executors {

    /**创建固定大小线程池用完就回收**/
    public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>());
    }
    /**创建固定大小线程池ForkJoinPool**/
    public static ExecutorService newWorkStealingPool(int parallelism) {
        return new ForkJoinPool
            (parallelism,
             ForkJoinPool.defaultForkJoinWorkerThreadFactory,
             null, true);
    }
    /**创建固定大小线程池ForkJoinPool,更具cpu的核心数量**/
    public static ExecutorService newWorkStealingPool() {
        return new ForkJoinPool
            (Runtime.getRuntime().availableProcessors(),
             ForkJoinPool.defaultForkJoinWorkerThreadFactory,
             null, true);
    }
    /**创建固定大小线程池自定义ThreadFactory,使用LinkedBlockingQueue**/
    public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>(),
                                      threadFactory);
    }
     /**创建单线程线程池**/
    public static ExecutorService newSingleThreadExecutor() {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>()));
    }
     /**创建单线程线程池,自定义ThreadFactory **/
    public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>(),
                                    threadFactory));
    }
     /**创建无限制线程池(最大整数)**/
    public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>());
    }
      /**创建无限制线程池(最大整数),自定义ThreadFactory **/
    public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>(),
                                      threadFactory);
    }

    /**单线程定时线程池**/
    
    public static ScheduledExecutorService newSingleThreadScheduledExecutor() {
        return new DelegatedScheduledExecutorService
            (new ScheduledThreadPoolExecutor(1));
    }

    /**单线程定时线程池,自定义ThreadFactory**/
    public static ScheduledExecutorService newSingleThreadScheduledExecutor(ThreadFactory threadFactory) {
        return new DelegatedScheduledExecutorService
            (new ScheduledThreadPoolExecutor(1, threadFactory));
    }

     /**定时线程池,固定线程数量**/
    public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
        return new ScheduledThreadPoolExecutor(corePoolSize);
    }

    /**定时线程池,固定线程数量,自定义ThreadFactory**/
    public static ScheduledExecutorService newScheduledThreadPool(
            int corePoolSize, ThreadFactory threadFactory) {
        return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);
    }

    
    private Executors() {}
}

从上面可以看出线程池的四种类型:

1.固定大小的线程池
2.单任务线程池
3.可变尺寸的线程池
4.调度线程池

这四种线程池除了固定大小线程池使用ForJoinPool,还有个很特别的现象就是每个线程池都可以有自定义的ThreadFactory,那么为什么要自定义ThreadFactory,首先看一下DefaultThreadFactory

/**
     * The default thread factory
     */
    static class DefaultThreadFactory implements ThreadFactory {
        private static final AtomicInteger poolNumber = new AtomicInteger(1);
        private final ThreadGroup group;
        private final AtomicInteger threadNumber = new AtomicInteger(1);
        private final String namePrefix;

        DefaultThreadFactory() {
            SecurityManager s = System.getSecurityManager();
            group = (s != null) ? s.getThreadGroup() :
                                  Thread.currentThread().getThreadGroup();
            namePrefix = "pool-" +
                          poolNumber.getAndIncrement() +
                         "-thread-";
        }

        public Thread newThread(Runnable r) {
            Thread t = new Thread(group, r,
                                  namePrefix + threadNumber.getAndIncrement(),
                                  0);
            if (t.isDaemon())
                t.setDaemon(false);
            if (t.getPriority() != Thread.NORM_PRIORITY)
                t.setPriority(Thread.NORM_PRIORITY);
            return t;
        }
    }

默认的ThreadFactory实际做的事情就是创建线程,给线程命名,设置线程优先级这些功能,如果有需要我们可以重写Thread类,对异常进行捕获,日志打印等等业务,所以为了方便我们处理都所有的线程池都提供了线程工厂的自定义实现

Java中的ThreadPoolExecutor类

java.uitl.concurrent.ThreadPoolExecutor类是线程池中最核心的一个类,因此如果要透彻地了解Java中的线程池,必须先了解这个类。下面我们来看一下ThreadPoolExecutor类的具体实现源码,在ThreadPoolExecutor类中提供了四个构造方法:

public class ThreadPoolExecutor extends AbstractExecutorService {
    .....
    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,
            BlockingQueue<Runnable> workQueue);
 
    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,
            BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory);
 
    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,
            BlockingQueue<Runnable> workQueue,RejectedExecutionHandler handler);
 
    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,
        BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler);
    ...
}

从上面的代码可以得知,ThreadPoolExecutor继承了AbstractExecutorService类,并提供了四个构造器,事实上,通过观察每个构造器的源码具体实现,发现前面三个构造器都是调用的第四个构造器进行的初始化工作。

   下面解释下一下构造器中各个参数的含义:

  • corePoolSize:核心池的大小,这个参数跟后面讲述的线程池的实现原理有非常大的关系。在创建了线程池后,默认情况下,线程池中并没有任何线程,而是等待有任务到来才创建线程去执行任务,除非调用了prestartAllCoreThreads()或者prestartCoreThread()方法,从这2个方法的名字就可以看出,是预创建线程的意思,即在没有任务到来之前就创建corePoolSize个线程或者一个线程。默认情况下,在创建了线程池后,线程池中的线程数为0,当有任务来之后,就会创建一个线程去执行任务,当线程池中的线程数目达到corePoolSize后,就会把到达的任务放到缓存队列当中;
  • maximumPoolSize:线程池最大线程数,这个参数也是一个非常重要的参数,它表示在线程池中最多能创建多少个线程;
  • keepAliveTime:表示线程没有任务执行时最多保持多久时间会终止。默认情况下,只有当线程池中的线程数大于corePoolSize时,keepAliveTime才会起作用,直到线程池中的线程数不大于corePoolSize,即当线程池中的线程数大于corePoolSize时,如果一个线程空闲的时间达到keepAliveTime,则会终止,直到线程池中的线程数不超过corePoolSize。但是如果调用了allowCoreThreadTimeOut(boolean)方法,在线程池中的线程数不大于corePoolSize时,keepAliveTime参数也会起作用,直到线程池中的线程数为0;
  • unit:参数keepAliveTime的时间单位
  • workQueue:一个阻塞队列,用来存储等待执行的任务,这个参数的选择也很重要,会对线程池的运行过程产生重大影响,一般来说,这里的阻塞队列有以下几种选择:
ArrayBlockingQueue;
LinkedBlockingQueue;
SynchronousQueue;

ArrayBlockingQueue和PriorityBlockingQueue使用较少,一般使用LinkedBlockingQueue和Synchronous。线程池的排队策略与BlockingQueue有关。

  • threadFactory:线程工厂,主要用来创建线程;
  • handler:表示当拒绝处理任务时的策略,有以下四种取值:
ThreadPoolExecutor.AbortPolicy:丢弃任务并抛出RejectedExecutionException异常。 
ThreadPoolExecutor.DiscardPolicy:也是丢弃任务,但是不抛出异常。 
ThreadPoolExecutor.DiscardOldestPolicy:丢弃队列最前面的任务,然后重新尝试执行任务(重复此过程)
ThreadPoolExecutor.CallerRunsPolicy:由调用线程处理该任务 

  从上面给出的ThreadPoolExecutor类的代码可以知道,ThreadPoolExecutor继承了AbstractExecutorService,我们来看一下AbstractExecutorService的实现:

public abstract class AbstractExecutorService implements ExecutorService {
 
     
    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) { };
    protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) { };
    public Future<?> submit(Runnable task) {};
    public <T> Future<T> submit(Runnable task, T result) { };
    public <T> Future<T> submit(Callable<T> task) { };
    private <T> T doInvokeAny(Collection<? extends Callable<T>> tasks,
                            boolean timed, long nanos)
        throws InterruptedException, ExecutionException, TimeoutException {
    };
    public <T> T invokeAny(Collection<? extends Callable<T>> tasks)
        throws InterruptedException, ExecutionException {
    };
    public <T> T invokeAny(Collection<? extends Callable<T>> tasks,
                           long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException {
    };
    public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
        throws InterruptedException {
    };
    public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
                                         long timeout, TimeUnit unit)
        throws InterruptedException {
    };
}

AbstractExecutorService是一个抽象类,它实现了ExecutorService接口。

  我们接着看ExecutorService接口的实现:

 package java.util.concurrent;
import java.util.List;
import java.util.Collection;
 
public interface ExecutorService extends Executor {
    void shutdown();
    List<Runnable> shutdownNow();

    boolean isShutdown();
    boolean isTerminated();

    boolean awaitTermination(long timeout, TimeUnit unit)
        throws InterruptedException;

    <T> Future<T> submit(Callable<T> task);

    <T> Future<T> submit(Runnable task, T result);


    Future<?> submit(Runnable task);

    <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
        throws InterruptedException;


    <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
                                  long timeout, TimeUnit unit)
        throws InterruptedException;


    <T> T invokeAny(Collection<? extends Callable<T>> tasks)
        throws InterruptedException, ExecutionException;

    <T> T invokeAny(Collection<? extends Callable<T>> tasks,
                    long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException;
}

  而ExecutorService又是继承了Executor接口,我们看一下Executor接口的实现:

public interface Executor {
    void execute(Runnable command);
}

到这里,大家应该明白了ThreadPoolExecutor、AbstractExecutorService、ExecutorService和Executor几个之间的关系了。

  Executor是一个顶层接口,在它里面只声明了一个方法execute(Runnable),返回值为void,参数为Runnable类型,从字面意思可以理解,就是用来执行传进去的任务的;

  然后ExecutorService接口继承了Executor接口,并声明了一些方法:submit、invokeAll、invokeAny以及shutDown等;

  抽象类AbstractExecutorService实现了ExecutorService接口,基本实现了ExecutorService中声明的所有方法;

  然后ThreadPoolExecutor继承了类AbstractExecutorService。

  在ThreadPoolExecutor类中有几个非常重要的方法:

execute()
shutdown()
shutdownNow()

execute()方法实际上是Executor中声明的方法,在ThreadPoolExecutor进行了具体的实现,这个方法是ThreadPoolExecutor的核心方法,通过这个方法可以向线程池提交一个任务,交由线程池去执行。

  submit()方法是在ExecutorService中声明的方法,在AbstractExecutorService就已经有了具体的实现,在ThreadPoolExecutor中并没有对其进行重写,这个方法也是用来向线程池提交任务的,但是它和execute()方法不同,它能够返回任务执行的结果,去看submit()方法的实现,会发现它实际上还是调用的execute()方法,只不过它利用了Future来获取任务执行结果(Future相关内容将在下一篇讲述)。

 

  shutdown()和shutdownNow()是用来关闭线程池的。

  还有很多其他的方法:

  比如:getQueue() 、getPoolSize() 、getActiveCount()、getCompletedTaskCount()等获取与线程池相关属性的方法,有兴趣的朋友可以自行查阅API。

深入剖析线程池实现原理

1.线程池的状态

private static final int RUNNING    = -1 << COUNT_BITS;
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    private static final int STOP       =  1 << COUNT_BITS;
    private static final int TIDYING    =  2 << COUNT_BITS;
    private static final int TERMINATED =  3 << COUNT_BITS;

 runState表示当前线程池的状态,它是一个volatile变量用来保证线程之间的可见性;

  下面的几个static final变量表示runState可能的几个取值。

  当创建线程池后,初始时,线程池处于RUNNING状态;

  如果调用了shutdown()方法,则线程池处于SHUTDOWN状态,此时线程池不能够接受新的任务,它会等待所有任务执行完毕;

  如果调用了shutdownNow()方法,则线程池处于STOP状态,此时线程池不能接受新的任务,并且会去尝试终止正在执行的任务;

  当线程池处于SHUTDOWN或STOP状态,并且所有工作线程已经销毁,任务缓存队列已经清空或执行结束后,线程池被设置为TERMINATED状态。

2.任务的执行

  在了解将任务提交给线程池到任务执行完毕整个过程之前,我们先来看一下ThreadPoolExecutor类中其他的一些比较重要成员变量:

private final BlockingQueue<Runnable> workQueue;              //任务缓存队列,用来存放等待执行的任务
private final ReentrantLock mainLock = new ReentrantLock();   //线程池的主要状态锁,对线程池状态(比如线程池大小
                                                              //、runState等)的改变都要使用这个锁
private final HashSet<Worker> workers = new HashSet<Worker>();  //用来存放工作集
 
 private final Condition termination = mainLock.newCondition(); // 细粒度的控制锁

private volatile long  keepAliveTime;    //线程存货时间   
private volatile boolean allowCoreThreadTimeOut;   //是否允许为核心线程设置存活时间
private volatile int   corePoolSize;     //核心池的大小(即线程池中的线程数目大于这个参数时,提交的任务会被放进任务缓存队列)
private volatile int   maximumPoolSize;   //线程池最大能容忍的线程数
 
private volatile int   poolSize;       //线程池中当前的线程数
 
private volatile RejectedExecutionHandler handler; //任务拒绝策略
 private static final RejectedExecutionHandler defaultHandler = new AbortPolicy();// 默认拒绝策略
 
private volatile ThreadFactory threadFactory;   //线程工厂,用来创建线程
 
private int largestPoolSize;   //用来记录线程池中曾经出现过的最大线程数
 
private long completedTaskCount;   //用来记录已经执行完毕的任务个数

  下面我们进入正题,看一下任务从提交到最终执行完毕经历了哪些过程。

public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn't, by returning false.
         *
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         */
        int c = ctl.get();
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        else if (!addWorker(command, false))
            reject(command);
    }

 

转载于:https://my.oschina.net/zaxb/blog/1926868

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值