数独终盘生成的几种方法

本文介绍了数独终盘的生成方法,包括矩阵转换法(数字交换、行或列调整)和随机法。矩阵转换法通过种子矩阵变换产生新终盘,随机法则通过随机填充数组来生成,讨论了其概率有效性。这两种方法提供了创建数独终盘的不同思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数独(すうどく,Sudoku)是一种运用纸、笔进行演算的逻辑游戏。玩家需要根据9×9盘面上的已知数字,推理出所有剩余空格的数字,并满足每一行、每一列、每一个粗线宫内的数字均含1-9,不重复。 

一般情况下,产生一个数独题目,包含两个步骤:

  1. 产生一个数独终盘(9X9)
  2. 在第一步产生的数独终盘中,根据难易程度,在终盘上挖掉不同数目的数字。

经过该两个步骤之后,我们就可以将某一个数独难题展示出来,如:

04213053_imy7.jpg

本文列举数独终盘产生的几个方法,大家一起来看看吧。

矩阵转换法

矩阵转换法,简言之,就是对一个已有的数独终盘矩阵进行操作。

主要采用交换数字、交换行/列数据等方法,产生新的矩阵。

为了完成矩阵的转换,我们需要有可用的数独终盘矩阵作为种子矩阵才行。可以采用如下做法完成: 

  • 先给定几个可用数独终盘作为备选种子矩阵。 
  • 产生一个随机数,随机选中其中的一个作为种子矩阵。 

如编写一个产生种子矩阵的工具类:

import java.util.Random;

/**
 * 
 * @author wangmengjun
 *
 */
public final class SeedSudokuMatrixFactory {

	private static final int seedSudokuArrays[][][] = {
			{ { 1, 2, 3, 4, 5, 6, 7, 8, 9 }, { 4, 5, 6, 7, 8, 9, 1, 2, 3 },
					{ 7, 8, 9, 1, 2, 3, 4, 5, 6 },
					{ 2, 1, 4, 3, 6, 5, 8, 9, 7 },
					{ 3, 6, 5, 8, 9, 7, 2, 1, 4 },
					{ 8, 9, 7, 2, 1, 4, 3, 6, 5 },
					{ 5, 3, 1, 6, 4, 2, 9, 7, 8 },
					{ 6, 4, 2, 9, 7, 8, 5, 3, 1 },
					{ 9, 7, 8, 5, 3, 1, 6, 4, 2 } },
			{ { 3, 9, 4, 5, 1, 7, 6, 2, 8 }, { 5, 1, 7, 6, 2, 8, 3, 9, 4 },
					{ 6, 2, 8, 3, 9, 4, 5, 1, 7 },
					{ 9, 3, 5, 4, 7, 1, 2, 8, 6 },
					{ 4, 7, 1, 2, 8, 6, 9, 3, 5 },
					{ 2, 8, 6, 9, 3, 5, 4, 7, 1 },
					{ 1, 4, 3, 7, 5, 9, 8, 6, 2 },
					{ 7, 5, 9, 8, 6, 2, 1, 4, 3 },
					{ 8, 6, 2, 1, 4, 3, 7, 5, 9 } },
			{ { 7, 6, 1, 9, 8, 4, 2, 3, 5 }, { 9, 8, 4, 2, 3, 5, 7, 6, 1 },
					{ 2, 3, 5, 7, 6, 1, 9, 8, 4 },
					{ 6, 7, 9, 1, 4, 8, 3, 5, 2 },
					{ 1, 4, 8, 3, 5, 2, 6, 7, 9 },
					{ 3, 5, 2, 6, 7, 9, 1, 4, 8 },
					{ 8, 1, 7, 4, 9, 6, 5, 2, 3 },
					{ 4, 9, 6, 5, 2, 3, 8, 1, 7 },
					{ 5, 2, 3, 8, 1, 7, 4, 9, 6 } },
			{ { 7, 1, 5, 4, 3, 6, 2, 9, 8 }, { 4, 3, 6, 2, 9, 8, 7, 1, 5 },
					{ 2, 9, 8, 7, 1, 5, 4, 3, 6 },
					{ 1, 7, 4, 5, 6, 3, 9, 8, 2 },
					{ 5, 6, 3, 9, 8, 2, 1, 7, 4 },
					{ 9, 8, 2, 1, 7, 4, 5, 6, 3 },
					{ 3, 5, 7, 6, 4, 1, 8, 2, 9 },
					{ 6, 4, 1, 8, 2, 9, 3, 5, 7 },
					{ 8, 2, 9, 3, 5, 7, 6, 4, 1 } } };

	private SeedSudokuMatrixFactory() {
	}

	/**
	 * 随机获取一个预先定义好的数独数组
	 */
	public static int[][] retrieveSeedSudokuArrayByRandom() {
		int randomInt = new Random().nextInt(seedSudokuArrays.length);
		return seedSudokuArrays[randomInt].clone();
	}
}

有了种子矩阵之后,我们就可以对某个种子矩阵做矩阵转换处理,从而获取更多的可用的数独终盘矩阵。

两个数互相交换法

下图就是一个数字9和数据1交换的例子: 

04213053_WuCF.jpg

import java.util.Arrays;
import java.util.Collections;
import java.util.List;

/**
 * 
 * @author wangmengjun
 *
 */
public class SudokuPuzzleMatrixGenerator {

	/** 待转换的数组种子数组 */
	private int[][] sampleArray = SeedSudokuMatrixFactory
			.retrieveSeedSudokuArrayByRandom();

	public int[][] generateSudokuArray() {
		List<Integer> randomList = buildRandomList();
		for (int i = 0; i < 9; i++) {
			for (int j = 0; j < 9; j++) {
				for (int k = 0; k < 9; k++) {
					if (sampleArray[i][j] == randomList.get(k)) {
						sampleArray[i][j] = randomList.get((k + 1) % 9);
						break;
					}
				}
			}
		}
		return sampleArray;
	}

	private List<Integer> buildRandomList() {
		List<Integer> result = Arrays.asList(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值