HDOJ 2828 Lamp DLX反复覆盖

本文介绍了一种使用DLX算法解决复杂灯开关问题的方法。面对多个开关控制多个灯泡的情况,且部分连接可能存在反转,通过构建特定的矩阵并应用DLX算法找到所有灯泡亮起的开关组合。


DLX反复覆盖模版题:

每一个开关两个状态。但仅仅能选一个,建2m×n的矩阵跑DLX模版。。

。。

Lamp

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 855    Accepted Submission(s): 265
Special Judge


Problem Description
There are several switches and lamps in the room, however, the connections between them are very complicated. One lamp may be controlled by several switches, and one switch may controls at most two lamps. And what’s more, some connections are reversed by mistake, so it’s possible that some lamp is lighted when its corresponding switch is “OFF”! 

To make things easier, we number all the lamps from 1 to N, and all the switches 1 to M. For each lamps, we give a list of switches controlling it. For example, for Lamp 1, the list is “1 ON 3 OFF 9 ON”, that means Lamp 1 will be lighted if the Switch 1 is at the “ON” state OR the Switch 3 is “OFF” OR the Switch 9 is “ON”.

Now you are requested to turn on or off the switches to make all the lamps lighted. 
 

Input
There are several test cases in the input. The first line of each test case contains N and M (1 <= N,M <= 500), then N lines follow, each indicating one lamp. Each line begins with a number K, indicating the number of switches controlling this lamp, then K pairs of “x ON” or “x OFF” follow.
 

Output
Output one line for each test case, each contains M strings “ON” or “OFF”, indicating the corresponding state of the switches. For the solution may be not unique, any correct answer will be OK. If there are no solutions, output “-1” instead.
 

Sample Input

   
2 2 2 1 ON 2 ON 1 1 OFF 2 1 1 1 ON 1 1 OFF
 

Sample Output

   
OFF ON -1
 

Source
 



#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>

using namespace std;

const int maxn=1010,maxm=510;
const int maxnode=maxn*maxm;
const int INF=0x3f3f3f3f;

int n,m;
bool flag;

struct DLX
{
    int n,m,size;
    int U[maxnode],D[maxnode],R[maxnode],L[maxnode],Row[maxnode],Col[maxnode];
    int H[maxn],S[maxm];
    int ansd,ans[maxn];
    int LAMP[maxn];
    bool vis[maxn];
    void init(int _n,int _m)
    {
        n=_n; m=_m;
        for(int i=0;i<=m;i++)
        {
            S[i]=0; U[i]=D[i]=i;
            L[i]=i-1; R[i]=i+1;
        }
        R[m]=0; L[0]=m;
        size=m;
        for(int i=1;i<=n;i++)
        {
            vis[i]=false;
            LAMP[i]=0;
            H[i]=-1;
        }
        flag=false;
    }
    void Link(int r,int c)
    {
        ++S[Col[++size]=c];
        Row[size]=r;
        D[size]=D[c];
        U[D[c]]=size;
        U[size]=c;
        D[c]=size;
        if(H[r]<0) H[r]=L[size]=R[size]=size;
        else
        {
            R[size]=R[H[r]];
            L[R[H[r]]]=size;
            L[size]=H[r];
            R[H[r]]=size;
        }
    }
    void remove(int c)
    {
        for(int i=D[c];i!=c;i=D[i])
            L[R[i]]=L[i],R[L[i]]=R[i];
    }
    void resume(int c)
    {
        for(int i=U[c];i!=c;i=U[i])
            L[R[i]]=R[L[i]]=i;
    }
    void Dance(int d)
    {
        if(flag) return ;
        if(R[0]==0)
        {
            ///find ans
            for(int i=0;i<d;i++)
            {
               int lamp=(ans[i]+1)/2;
               if(ans[i]%2) LAMP[lamp]=1;
            }
            for(int i=1;i<=n/2;i++)
            {
                if(LAMP[i]==1) printf("ON");
                else printf("OFF");
                if(i!=n/2) putchar(32); else putchar(10);
            }
            flag=true;
            return ;
        }
        int c=R[0];
        for(int i=R[0];i!=0;i=R[i])
        {
            if(S[i]<S[c]) c=i;
        }
        for(int i=D[c];i!=c;i=D[i])
        {
            if(vis[Row[i]]) continue;
            int r1=Row[i],r2=Row[i];
            if(r1%2==0) r2--;else r2++;
            vis[r1]=true; vis[r2]=true;
            remove(i);
            for(int j=R[i];j!=i;j=R[j]) remove(j);
            ans[d]=Row[i];
            Dance(d+1);
            for(int j=L[i];j!=i;j=L[j]) resume(j);
            resume(i);
            vis[r1]=false; vis[r2]=false;
        }
    }
};

DLX dlx;

int main()
{
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        dlx.init(2*m,n);
        for(int i=1;i<=n;i++)
        {
            int k;
            scanf("%d",&k);
            for(int j=0;j<k;j++)
            {
                int p; char sw[20];
                scanf("%d%s",&p,sw);
                if(sw[1]=='N') dlx.Link(2*p-1,i);
                else if(sw[1]=='F') dlx.Link(2*p,i);
            }
        }
        dlx.Dance(0);
        if(flag==false) puts("-1");
    }
    return 0;
}



评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值