Storm入门(四)WordCount示例

本文详细介绍如何使用Apache Storm进行实时WordCount计算,包括代码实现、Spout与Bolt组件设计、拓扑构建及执行效果展示。

一、关联代码

使用maven,代码如下。

pom.xml  和Storm入门(三)HelloWorld示例相同

RandomSentenceSpout.java

复制代码
/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package cn.ljh.storm.wordcount; import org.apache.storm.spout.SpoutOutputCollector; import org.apache.storm.task.TopologyContext; import org.apache.storm.topology.OutputFieldsDeclarer; import org.apache.storm.topology.base.BaseRichSpout; import org.apache.storm.tuple.Fields; import org.apache.storm.tuple.Values; import org.apache.storm.utils.Utils; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.text.SimpleDateFormat; import java.util.Date; import java.util.Map; import java.util.Random; public class RandomSentenceSpout extends BaseRichSpout { private static final Logger LOG = LoggerFactory.getLogger(RandomSentenceSpout.class); SpoutOutputCollector _collector; Random _rand; public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) { _collector = collector; _rand = new Random(); } public void nextTuple() { Utils.sleep(100); String[] sentences = new String[]{ sentence("the cow jumped over the moon"), sentence("an apple a day keeps the doctor away"), sentence("four score and seven years ago"), sentence("snow white and the seven dwarfs"), sentence("i am at two with nature")}; final String sentence = sentences[_rand.nextInt(sentences.length)]; LOG.debug("Emitting tuple: {}", sentence); _collector.emit(new Values(sentence)); } protected String sentence(String input) { return input; } @Override public void ack(Object id) { } @Override public void fail(Object id) { } public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("word")); } // Add unique identifier to each tuple, which is helpful for debugging public static class TimeStamped extends RandomSentenceSpout { private final String prefix; public TimeStamped() { this(""); } public TimeStamped(String prefix) { this.prefix = prefix; } protected String sentence(String input) { return prefix + currentDate() + " " + input; } private String currentDate() { return new SimpleDateFormat("yyyy.MM.dd_HH:mm:ss.SSSSSSSSS").format(new Date()); } } }
复制代码

WordCountTopology.java

复制代码
/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package cn.ljh.storm.wordcount; import org.apache.storm.Config; import org.apache.storm.LocalCluster; import org.apache.storm.StormSubmitter; import org.apache.storm.task.OutputCollector; import org.apache.storm.task.TopologyContext; import org.apache.storm.topology.BasicOutputCollector; import org.apache.storm.topology.IRichBolt; import org.apache.storm.topology.OutputFieldsDeclarer; import org.apache.storm.topology.TopologyBuilder; import org.apache.storm.topology.base.BaseBasicBolt; import org.apache.storm.tuple.Fields; import org.apache.storm.tuple.Tuple; import org.apache.storm.tuple.Values; import java.util.ArrayList; import java.util.Collections; import java.util.HashMap; import java.util.List; import java.util.Map; public class WordCountTopology { public static class SplitSentence implements IRichBolt { private OutputCollector _collector; public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("word")); } public Map<String, Object> getComponentConfiguration() { return null; } public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) { _collector = collector; } public void execute(Tuple input) { String sentence = input.getStringByField("word"); String[] words = sentence.split(" "); for(String word : words){ this._collector.emit(new Values(word)); } } public void cleanup() { // TODO Auto-generated method stub  } } public static class WordCount extends BaseBasicBolt { Map<String, Integer> counts = new HashMap<String, Integer>(); public void execute(Tuple tuple, BasicOutputCollector collector) { String word = tuple.getString(0); Integer count = counts.get(word); if (count == null) count = 0; count++; counts.put(word, count); collector.emit(new Values(word, count)); } public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("word", "count")); } } public static class WordReport extends BaseBasicBolt { Map<String, Integer> counts = new HashMap<String, Integer>(); public void execute(Tuple tuple, BasicOutputCollector collector) { String word = tuple.getStringByField("word"); Integer count = tuple.getIntegerByField("count"); this.counts.put(word, count); } public void declareOutputFields(OutputFieldsDeclarer declarer) { } @Override public void cleanup() { System.out.println("-----------------FINAL COUNTS START-----------------------"); List<String> keys = new ArrayList<String>(); keys.addAll(this.counts.keySet()); Collections.sort(keys); for(String key : keys){ System.out.println(key + " : " + this.counts.get(key)); } System.out.println("-----------------FINAL COUNTS END-----------------------"); } } public static void main(String[] args) throws Exception { TopologyBuilder builder = new TopologyBuilder(); builder.setSpout("spout", new RandomSentenceSpout(), 5); //ShuffleGrouping:随机选择一个Task来发送。 builder.setBolt("split", new SplitSentence(), 8).shuffleGrouping("spout"); //FiledGrouping:根据Tuple中Fields来做一致性hash,相同hash值的Tuple被发送到相同的Task。 builder.setBolt("count", new WordCount(), 12).fieldsGrouping("split", new Fields("word")); //GlobalGrouping:所有的Tuple会被发送到某个Bolt中的id最小的那个Task。 builder.setBolt("report", new WordReport(), 6).globalGrouping("count"); Config conf = new Config(); conf.setDebug(true); if (args != null && args.length > 0) { conf.setNumWorkers(3); StormSubmitter.submitTopologyWithProgressBar(args[0], conf, builder.createTopology()); } else { conf.setMaxTaskParallelism(3); LocalCluster cluster = new LocalCluster(); cluster.submitTopology("word-count", conf, builder.createTopology()); Thread.sleep(20000); cluster.shutdown(); } } }
复制代码

 

二、执行效果

image

 
 

转载于:https://www.cnblogs.com/liuys635/p/10786476.html

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值