HDU-1159 Common Subsequence(动态规划2)

本文介绍了如何使用动态规划方法解决最长公共子序列问题,并提供了C++代码实现。

Description

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

Input

The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

Output

For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

Sample Input

abcfbc         abfcab
programming    contest 
abcd           mnp

Sample Output

4
2
0

x的一个子序列相应于下标序列{1,2,3.....m}的一个子序列,故X共有2^m个子序列,直接爆,需要指数时间。为此,考虑能否用动态规划方法求解。
先找出它是否满足最优子结构性质:
设序列X={x1,...xm}和y={y2,....yn},子序列为z={z1,...zk}
(1)如果 xm=yn,则zk=xn=yn;且z(k-1)是x(m-1)和y(n-1)的最长公共子序列。
找出x(m-1)和y(n-1)的最长公共子序列,然后在其尾部加上xm(=yn)即可得x和y的一个最长公共 子序列
(2)如果xm!=yn,且zk!=xm 则z 是x(m-1)和y的最长公共子序列。
如果xm!=yn,且zk!=yn 则z 是x 和y(n-1的最长公共子序列。
找出x(m-1)和y的一个最长公共子序列及x和y(n-1)的最长公共子序列。这两个公共子序列中较长者即为X和Y的一个最长公共子序列。
如 1 2 3 4 7
1 2 4 5
或 1 2 3 4 9
1 2 3 4
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
int main()
{
    char a[1001],b[1001];
    int n,m,i,j,c[1001][1001];
    while(scanf("%s%s",&a,&b)!=EOF)
    {

        n=strlen(a);
        m=strlen(b);
        if(n==0||b==0)
        {
            printf("0\n");
            break;
        }
        memset(c,0,sizeof(c));
        for(i=1; i<=n; i++)
        {
            for(j=1; j<=m; j++)
            {
                if(a[i-1]==b[j-1])
                {
                    c[i][j]=c[i-1][j-1]+1;
                }
                else
                {
                    c[i][j]=max(c[i-1][j],c[i][j-1]);
                }
            }
        }
        printf("%d\n",c[n][m]);
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/tianmin123/p/4647744.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值