并行求解三对角矩阵 CR方法 v2 从0开始,指针传入
根据文献
A comparison of sequential and parallel elimination methods for tridiagonal matrices
D.J. Evans
int pTM20(double *a, double *b, double *c, double *r, double *x,int n){
//原矩阵形式 要求 对角占优 a[0]=0 c[n]=0
//b0 c0
//a1 b1 c1
// a2 b2 c2
// ···
// an bn
double *f,*g,*h;
f=new double[n+1];
h=new double[n+1];
g=new double[n+1];
int p=n/2;
#pragma omp parallel sections
{
#pragma omp section
{
g[0]=c[0]/b[0];
h[0]=r[0]/b[0];
for(int i=1;i<=p;i++){
g[i]=c[i]/(b[i]-a[i]*g[i-1]);
h[i]=(r[i]-a[i]*h[i-1])/(b[i]-a[i]*g[i-1]);
}
}
#pragma omp section
{
f[n]=a[n]/b[n];
h[n]=r[n]/b[n];
for(int j=n-1;j>=(p+1);j--){
f[j]=a[j]/(b[j]-c[j]*f[j+1]);
h[j]=(r[j]-c[j]*h[j+1])/(b[j]-c[j]*f[j+1]);
}
}
}
#pragma omp parallel sections
{
#pragma omp section
{
x[p]=(h[p]-g[p]*h[p+1])/(1-g[p]*f[p+1]);
for(int i=p-1;i>=0;i--){
x[i]=h[i]-g[i]*x[i+1];
}
}
#pragma omp section
{
x[p+1]=(h[p+1]-f[p+1]*h[p])/(1-g[p]*f[p+1]);
for(int j=p+2;j<=n;j++){
x[j]=h[j]-f[j]*x[j-1];
}
}
}
delete[] f;
delete[] g;
delete[] h;
return 0;
}