hdu 1342 and poj 2245 Lotto,dfs

本文介绍了一种生成Lotto号码组合的算法实现,通过输入特定数量的数字集合,程序能够输出所有可能的游戏组合。提供了两种不同的C++实现方案,一种采用深度优先搜索(DFS)方法,另一种则直接通过多重循环生成所有组合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Lotto

Problem Description

In a Lotto I have ever played, one has to select 6 numbers from the set {1,2,...,49}. A popular strategy to play Lotto - although it doesn't increase your chance of winning - is to select a subset S containing k (k>6) of these 49 numbers, and then play several games with choosing numbers only from S. For example, for k=8 and S = {1,2,3,5,8,13,21,34} there are 28 possible games: [1,2,3,5,8,13], [1,2,3,5,8,21], [1,2,3,5,8,34], [1,2,3,5,13,21], ... [3,5,8,13,21,34]. 

Your job is to write a program that reads in the number k and the set S and then prints all possible games choosing numbers only from S.

 

Input

The input file will contain one or more test cases. Each test case consists of one line containing several integers separated from each other by spaces. The first integer on the line will be the number k (6 < k < 13). Then k integers, specifying the set S, will follow in ascending order. Input will be terminated by a value of zero (0) for k. 

Output

For each test case, print all possible games, each game on one line. The numbers of each game have to be sorted in ascending order and separated from each other by exactly one space. The games themselves have to be sorted lexicographically, that means sorted by the lowest number first, then by the second lowest and so on, as demonstrated in the sample output below. The test cases have to be separated from each other by exactly one blank line. Do not put a blank line after the last test case. 
 

 

Sample Input
7 1 2 3 4 5 6 7
8 1 2 3 5 8 13 21 34
0
 


Sample Output
1 2 3 4 5 6
1 2 3 4 5 7
1 2 3 4 6 7
1 2 3 5 6 7
1 2 4 5 6 7
1 3 4 5 6 7
2 3 4 5 6 7
 
 
1 2 3 5 8 13
1 2 3 5 8 21
1 2 3 5 8 34
1 2 3 5 13 21
1 2 3 5 13 34
1 2 3 5 21 34
1 2 3 8 13 21
1 2 3 8 13 34
1 2 3 8 21 34
1 2 3 13 21 34
1 2 5 8 13 21
1 2 5 8 13 34
1 2 5 8 21 34
1 2 5 13 21 34
1 2 8 13 21 34
1 3 5 8 13 21
1 3 5 8 13 34
1 3 5 8 21 34
1 3 5 13 21 34
1 3 8 13 21 34
1 5 8 13 21 34
2 3 5 8 13 21
2 3 5 8 13 34
2 3 5 8 21 34
2 3 5 13 21 34
2 3 8 13 21 34
2 5 8 13 21 34
3 5 8 13 21 34
 
 
分析:这道题目的是找到所有的组合情况,可以用组合数学的方法,可以用回溯,但还是按照和回溯差不多的算法写了dfs,对dfs还不是太了解。网上搜了一下解题报告,勉强写出了下面的代码。
程序代码:
#include <iostream>
#include <cstdio>
using namespace std;

int k, a[13], ans[6];
void dfs(int cur, int st)
{
    if(cur == 6)
    {
        printf("%d", a[ans[0]]);
        for(int i = 1; i <6; i++)
            printf(" %d", a[ans[i]]);
        printf("\n");
        return;
    }
    for(int i = st+1; i < k; i++)
    {
        ans[cur] = i;
        dfs(cur+1, i);
    }
}
int main()
{
    bool flag  = false;
    while(scanf("%d", &k), k)
    {
        for(int i = 0; i < k; i++)
            scanf("%d", &a[i]);
        if(flag) printf("\n");
        flag = true;
        for(int i = 0; i <= k-6; i++)
        {
            ans[0] = i;
            dfs(1, i);
        }
    }
    return 0;
}

在网上看到一种更神的方法,真乃业界神人:

#include <iostream>
#include <cstdio>
using namespace std;

int main()
{
    int k, a[14];
    bool flag  = false;
    while(scanf("%d", &k), k)
    {
        for(int i = 0; i < k; i++)
            scanf("%d", &a[i]);
        if(flag) printf("\n");
        flag = true;
        for(int i = 0; i < k-5; i++)
            for(int j = i+1; j < k-4; j++)
                for(int l = j+1; l < k-3; l++)
                    for(int m = l+1; m < k-2; m++)
                        for(int n = m+1; n < k-1; n++)
                            for(int p = n+1; p < k; p++)
                                printf("%d %d %d %d %d %d\n", a[i], a[j], a[l], a[m], a[n], a[p]);
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/dzkang2011/p/dfs_1.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值