523. Continuous Subarray Sum

本文介绍了一种算法,用于检查给定数组中是否存在连续子数组,其和为给定整数K的倍数。通过使用前缀和与哈希表,该算法能在O(n)时间内解决问题,特别关注了k为0的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a list of non-negative numbers and a target integer k, write a function to check if the array has a continuous subarray of size at least 2 that sums up to the multiple of k, that is, sums up to n*k where n is also an integer.

Example 1:

Input: [23, 2, 4, 6, 7],  k=6
Output: True
Explanation: Because [2, 4] is a continuous subarray of size 2 and sums up to 6.

 

Example 2:

Input: [23, 2, 6, 4, 7],  k=6
Output: True
Explanation: Because [23, 2, 6, 4, 7] is an continuous subarray of size 5 and sums up to 42.

 

Note:

  1. The length of the array won't exceed 10,000.
  2. You may assume the sum of all the numbers is in the range of a signed 32-bit integer.

这题看起来像Subarray Sum Equals K的follow up,不是刚好和为k,而是为K的倍数。主要思路是对presum取余数,判断是否有余数相同的情况,因为数组中数字非负,对于k不等于0时,肯定中间子数组数字的求和为k的整数。这题要注意的是k为0的情况。另外个Subarray Sum Equals K这题一样,为了解决从头开始的情况,hashmap里要放入(0:-1)这对。

代码:

class Solution(object):
    def checkSubarraySum(self, nums, k):
        """
        :type nums: List[int]
        :type k: int
        :rtype: bool
        """
        hashmap = {0:-1} 
        presum = 0
        for i in xrange(len(nums)):
            presum += nums[i]
# k为0时要特殊处理 if k == 0: if presum == 0: remainder = 0 else: return False else: remainder = presum % k if remainder in hashmap: if i - hashmap[remainder] > 1: return True else: hashmap[remainder] = i return False

  

转载于:https://www.cnblogs.com/sherylwang/p/9745373.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值