poj3311

本文介绍了一种解决比萨速递最短路径问题的方法,使用Floyd算法预处理任意两点间的最短路径,通过动态规划求解最优配送路线。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Hie with the Pie
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 8467 Accepted: 4628

Description

The Pizazz Pizzeria prides itself in delivering pizzas to its customers as fast as possible. Unfortunately, due to cutbacks, they can afford to hire only one driver to do the deliveries. He will wait for 1 or more (up to 10) orders to be processed before he starts any deliveries. Needless to say, he would like to take the shortest route in delivering these goodies and returning to the pizzeria, even if it means passing the same location(s) or the pizzeria more than once on the way. He has commissioned you to write a program to help him.

Input

Input will consist of multiple test cases. The first line will contain a single integer n indicating the number of orders to deliver, where 1 ≤ n ≤ 10. After this will be n + 1 lines each containing n + 1 integers indicating the times to travel between the pizzeria (numbered 0) and the n locations (numbers 1 to n). The jth value on the ith line indicates the time to go directly from location i to location j without visiting any other locations along the way. Note that there may be quicker ways to go from i to j via other locations, due to different speed limits, traffic lights, etc. Also, the time values may not be symmetric, i.e., the time to go directly from location i to j may not be the same as the time to go directly from location j to i. An input value of n = 0 will terminate input.

Output

For each test case, you should output a single number indicating the minimum time to deliver all of the pizzas and return to the pizzeria.

Sample Input

3
0 1 10 10
1 0 1 2
10 1 0 10
10 2 10 0
0

Sample Output

8

题意:有N个地点(1~N)和一个PIZZA店(0),要求一条回路,从0出发,又回到0,且经过这N个点(每个点可经过多次),而且距离最短。
分析:先用floyd求出任意两点的最短距离,再枚举所有状态,用二进制数S表示,
S中第i位为1表示经过点i,为0则表示不经过点i,状态(S,i)表示在状态S下到达点i的最短路程,
状态转移方程为dp[S][i]=min(dp[S][i],dp[S^(1<<(i-1))][k]+dis[k][i]),0<k<=N且k!=i,与floyd类似,
最后对于S中全是1的状态,ans=min(dp[S][i]+dis[i][0]),0<i<=N。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define INF 999999999
using namespace std;
int dis[11][11];
int dp[1<<11][11];
int main()
{
    int N;
    while(scanf("%d",&N)&&N)
    {
        for(int i=0;i<=N;i++)
        for(int j=0;j<=N;j++)
            scanf("%d",&dis[i][j]);
        
        for(int k=0;k<=N;k++)
        for(int i=0;i<=N;i++)
        for(int j=0;j<=N;j++)
        dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
//dp[S][i]表示从点0经过状态S(数S第i位为0表示不经过点i,为1表示过点i),最后到达点i的最短路程
        int S=0;
        for(;S<(1<<N);S++)//枚举集合S,数S中的1表示经过第i个点 
            for(int i=1;i<=N;i++)//枚举每个点 
                if(S&(1<<(i-1)))//状态S经过点i 
                {
                    if(S==(1<<(i-1)))//状态S只经过点i 
                        dp[S][i]=dis[0][i];//相当于DP的边界条件 
                    else
                    {
                        dp[S][i]=INF;
                        for(int k=1;k<=N;k++)
                        {
                            if(k!=i&&(S&(1<<(k-1))))//枚举状态S中除去点0与点i的其他点,跟floyd相似 
                            dp[S][i]=min(dp[S][i],dp[S^(1<<(i-1))][k]+dis[k][i]);
                            //S^(1<<(i-1))通过异或把状态S中的点i去掉 
                        }
                    }
                }
        int ans=dp[--S][1]+dis[1][0]; 
        for(int i=2;i<=N;i++)
        ans=min(dp[S][i]+dis[i][0],ans);
        printf("%d\n",ans);
    }
    return 0;
}
View Code

 







转载于:https://www.cnblogs.com/ACRykl/p/8393027.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值