源码解析之ConcurrentHashMap


title: 源码解析之ConcurrentHashMap tags:

  • ConcurrentHashMap
  • UNSAFE
  • 锁分离
  • JCF
  • JUC categories: juc date: 2017-10-16 16:14:53

前言

相信有并发经验的小伙伴对于ConcurrentHashMap不会陌生。

上一篇我们描述了cow容器 cow容器之CopyOnWriteArrayList,主要是CopyOnWriteArrayList,当然我们也有同步容器可以选择(Collections.synchronizedCollection等)

提到并发想必大家最常用的还是本篇的主角 ConcurrentHashMap

思路

提到并发,大家的思路无非就是加锁。那么我们可以考虑一下为啥需要加锁呢?存在竞态条件呗

那如何提高线程并发度呢?

一个现实生活中的例子就是银行多开几个窗口,那么自然可以把并发度提高。

我们考虑如下问

  1. 容器在读的时候不需要任何同步(因为数据未更新)

  2. 容器写完了之后其他线程读取或者再次写入必须要同步

    1. 如果用户操作的不同数据 可以不同步
    2. 如果用户操作的同一个数据 必须同步

在mysql中我们通常会有表级锁,行级锁也是同样的道理。

那么要求我们将并发度提升的关键在于锁的细化(锁分离)

关键就在于我们可以吧ConcurrentHashMap的并发粒度降低,并发冲突减小

源码

类图

ConcurrentHashMap在实现了Map接口的基础上同时实现了ConcurrentMap接口

该接口提供了一系列等价原语


    public interface ConcurrentMap<K, V> extends Map<K, V> {
        /**
         * If the specified key is not already associated
         * with a value, associate it with the given value.
         * This is equivalent to
         * <pre>
         *   if (!map.containsKey(key))
         *       return map.put(key, value);
         *   else
         *       return map.get(key);</pre>
         * except that the action is performed atomically.
         *
         * @param key key with which the specified value is to be associated
         * @param value value to be associated with the specified key
         * @return the previous value associated with the specified key, or
         *         <tt>null</tt> if there was no mapping for the key.
         *         (A <tt>null</tt> return can also indicate that the map
         *         previously associated <tt>null</tt> with the key,
         *         if the implementation supports null values.)
         * @throws UnsupportedOperationException if the <tt>put</tt> operation
         *         is not supported by this map
         * @throws ClassCastException if the class of the specified key or value
         *         prevents it from being stored in this map
         * @throws NullPointerException if the specified key or value is null,
         *         and this map does not permit null keys or values
         * @throws IllegalArgumentException if some property of the specified key
         *         or value prevents it from being stored in this map
         *
         */
        V putIfAbsent(K key, V value);
     
        /**
         * Removes the entry for a key only if currently mapped to a given value.
         * This is equivalent to
         * <pre>
         *   if (map.containsKey(key) && map.get(key).equals(value)) {
         *       map.remove(key);
         *       return true;
         *   } else return false;</pre>
         * except that the action is performed atomically.
         *
         * @param key key with which the specified value is associated
         * @param value value expected to be associated with the specified key
         * @return <tt>true</tt> if the value was removed
         * @throws UnsupportedOperationException if the <tt>remove</tt> operation
         *         is not supported by this map
         * @throws ClassCastException if the key or value is of an inappropriate
         *         type for this map
         *         (<a href="../Collection.html#optional-restrictions">optional</a>)
         * @throws NullPointerException if the specified key or value is null,
         *         and this map does not permit null keys or values
         *         (<a href="../Collection.html#optional-restrictions">optional</a>)
         */
        boolean remove(Object key, Object value);
     
        /**
         * Replaces the entry for a key only if currently mapped to a given value.
         * This is equivalent to
         * <pre>
         *   if (map.containsKey(key) && map.get(key).equals(oldValue)) {
         *       map.put(key, newValue);
         *       return true;
         *   } else return false;</pre>
         * except that the action is performed atomically.
         *
         * @param key key with which the specified value is associated
         * @param oldValue value expected to be associated with the specified key
         * @param newValue value to be associated with the specified key
         * @return <tt>true</tt> if the value was replaced
         * @throws UnsupportedOperationException if the <tt>put</tt> operation
         *         is not supported by this map
         * @throws ClassCastException if the class of a specified key or value
         *         prevents it from being stored in this map
         * @throws NullPointerException if a specified key or value is null,
         *         and this map does not permit null keys or values
         * @throws IllegalArgumentException if some property of a specified key
         *         or value prevents it from being stored in this map
         */
        boolean replace(K key, V oldValue, V newValue);
     
        /**
         * Replaces the entry for a key only if currently mapped to some value.
         * This is equivalent to
         * <pre>
         *   if (map.containsKey(key)) {
         *       return map.put(key, value);
         *   } else return null;</pre>
         * except that the action is performed atomically.
         *
         * @param key key with which the specified value is associated
         * @param value value to be associated with the specified key
         * @return the previous value associated with the specified key, or
         *         <tt>null</tt> if there was no mapping for the key.
         *         (A <tt>null</tt> return can also indicate that the map
         *         previously associated <tt>null</tt> with the key,
         *         if the implementation supports null values.)
         * @throws UnsupportedOperationException if the <tt>put</tt> operation
         *         is not supported by this map
         * @throws ClassCastException if the class of the specified key or value
         *         prevents it from being stored in this map
         * @throws NullPointerException if the specified key or value is null,
         *         and this map does not permit null keys or values
         * @throws IllegalArgumentException if some property of the specified key
         *         or value prevents it from being stored in this map
         */
        V replace(K key, V value);
复制代码

构造函数


    /**
     * Creates a new, empty map with the specified initial
     * capacity, load factor and concurrency level.
     *
     * @param initialCapacity the initial capacity. The implementation
     * performs internal sizing to accommodate this many elements.
     * @param loadFactor  the load factor threshold, used to control resizing.
     * Resizing may be performed when the average number of elements per
     * bin exceeds this threshold.
     * @param concurrencyLevel the estimated number of concurrently
     * updating threads. The implementation performs internal sizing
     * to try to accommodate this many threads.
     * @throws IllegalArgumentException if the initial capacity is
     * negative or the load factor or concurrencyLevel are
     * nonpositive.
     */
    @SuppressWarnings("unchecked")
    public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (concurrencyLevel > MAX_SEGMENTS)
            concurrencyLevel = MAX_SEGMENTS;
        // Find power-of-two sizes best matching arguments
        int sshift = 0;
        int ssize = 1;
        while (ssize < concurrencyLevel) {
            ++sshift;
            ssize <<= 1;
        }
        this.segmentShift = 32 - sshift;
        this.segmentMask = ssize - 1;
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        int c = initialCapacity / ssize;
        if (c * ssize < initialCapacity)
            ++c;
        int cap = MIN_SEGMENT_TABLE_CAPACITY;
        while (cap < c)
            cap <<= 1;
        // create segments and segments[0]
        Segment<K,V> s0 =
            new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                             (HashEntry<K,V>[])new HashEntry[cap]);
        Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
        this.segments = ss;
    }
     
    /**
     * Creates a new, empty map with the specified initial capacity
     * and load factor and with the default concurrencyLevel (16).
     *
     * @param initialCapacity The implementation performs internal
     * sizing to accommodate this many elements.
     * @param loadFactor  the load factor threshold, used to control resizing.
     * Resizing may be performed when the average number of elements per
     * bin exceeds this threshold.
     * @throws IllegalArgumentException if the initial capacity of
     * elements is negative or the load factor is nonpositive
     *
     * @since 1.6
     */
    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
    }
     
    /**
     * Creates a new, empty map with the specified initial capacity,
     * and with default load factor (0.75) and concurrencyLevel (16).
     *
     * @param initialCapacity the initial capacity. The implementation
     * performs internal sizing to accommodate this many elements.
     * @throws IllegalArgumentException if the initial capacity of
     * elements is negative.
     */
    public ConcurrentHashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
    }
     
    /**
     * Creates a new, empty map with a default initial capacity (16),
     * load factor (0.75) and concurrencyLevel (16).
     */
    public ConcurrentHashMap() {
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
    }
复制代码

通常情况下 我们会调用无参构造函数,那么意味着默认负载因子为0.75,默认初始容量16,默认并发度16(16个segment)

和HashMap原理相当相似,选择了power-of-two来作为相关参数。

从原理图我们可以看到ConcurrentHashMap需要初始化一个Segment数组,同时真是的KV存放在对应的Segment中。

因此首先初始化Segment数组,细心的小伙伴可能注意到了


    Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
    UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
复制代码

UNSAFE这个属于在Java中作弊器般的存在被用来做多种性能炸裂的基础库(比如netty等)需要注意的是Jdk9发布后该类的包名已经做了修改 这个后面可以探讨


    /**
     * Segments are specialized versions of hash tables.  This
     * subclasses from ReentrantLock opportunistically, just to
     * simplify some locking and avoid separate construction.
     */
    static final class Segment<K,V> extends ReentrantLock implements Serializable {
        /*
         * Segments maintain a table of entry lists that are always
         * kept in a consistent state, so can be read (via volatile
         * reads of segments and tables) without locking.  This
         * requires replicating nodes when necessary during table
         * resizing, so the old lists can be traversed by readers
         * still using old version of table.
         *
         * This class defines only mutative methods requiring locking.
         * Except as noted, the methods of this class perform the
         * per-segment versions of ConcurrentHashMap methods.  (Other
         * methods are integrated directly into ConcurrentHashMap
         * methods.) These mutative methods use a form of controlled
         * spinning on contention via methods scanAndLock and
         * scanAndLockForPut. These intersperse tryLocks with
         * traversals to locate nodes.  The main benefit is to absorb
         * cache misses (which are very common for hash tables) while
         * obtaining locks so that traversal is faster once
         * acquired. We do not actually use the found nodes since they
         * must be re-acquired under lock anyway to ensure sequential
         * consistency of updates (and in any case may be undetectably
         * stale), but they will normally be much faster to re-locate.
         * Also, scanAndLockForPut speculatively creates a fresh node
         * to use in put if no node is found.
         */
     
        private static final long serialVersionUID = 2249069246763182397L;
     
        /**
         * The maximum number of times to tryLock in a prescan before
         * possibly blocking on acquire in preparation for a locked
         * segment operation. On multiprocessors, using a bounded
         * number of retries maintains cache acquired while locating
         * nodes.
         */
        static final int MAX_SCAN_RETRIES =
            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
     
        /**
         * The per-segment table. Elements are accessed via
         * entryAt/setEntryAt providing volatile semantics.
         */
        transient volatile HashEntry<K,V>[] table;
     
        /**
         * The number of elements. Accessed only either within locks
         * or among other volatile reads that maintain visibility.
         */
        transient int count;
     
        /**
         * The total number of mutative operations in this segment.
         * Even though this may overflows 32 bits, it provides
         * sufficient accuracy for stability checks in CHM isEmpty()
         * and size() methods.  Accessed only either within locks or
         * among other volatile reads that maintain visibility.
         */
        transient int modCount;
     
        /**
         * The table is rehashed when its size exceeds this threshold.
         * (The value of this field is always <tt>(int)(capacity *
         * loadFactor)</tt>.)
         */
        transient int threshold;
     
        /**
         * The load factor for the hash table.  Even though this value
         * is same for all segments, it is replicated to avoid needing
         * links to outer object.
         * @serial
         */
        final float loadFactor;
     
        Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
            this.loadFactor = lf;
            this.threshold = threshold;
            this.table = tab;
        }
     
        final V put(K key, int hash, V value, boolean onlyIfAbsent) {
            HashEntry<K,V> node = tryLock() ? null :
                scanAndLockForPut(key, hash, value);
            V oldValue;
            try {
                HashEntry<K,V>[] tab = table;
                int index = (tab.length - 1) & hash;
                HashEntry<K,V> first = entryAt(tab, index);
                for (HashEntry<K,V> e = first;;) {
                    if (e != null) {
                        K k;
                        if ((k = e.key) == key ||
                            (e.hash == hash && key.equals(k))) {
                            oldValue = e.value;
                            if (!onlyIfAbsent) {
                                e.value = value;
                                ++modCount;
                            }
                            break;
                        }
                        e = e.next;
                    }
                    else {
                        if (node != null)
                            node.setNext(first);
                        else
                            node = new HashEntry<K,V>(hash, key, value, first);
                        int c = count + 1;
                        if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                            rehash(node);
                        else
                            setEntryAt(tab, index, node);
                        ++modCount;
                        count = c;
                        oldValue = null;
                        break;
                    }
                }
            } finally {
                unlock();
            }
            return oldValue;
        }
     
        /**
         * Doubles size of table and repacks entries, also adding the
         * given node to new table
         */
        @SuppressWarnings("unchecked")
        private void rehash(HashEntry<K,V> node) {
            /*
             * Reclassify nodes in each list to new table.  Because we
             * are using power-of-two expansion, the elements from
             * each bin must either stay at same index, or move with a
             * power of two offset. We eliminate unnecessary node
             * creation by catching cases where old nodes can be
             * reused because their next fields won't change.
             * Statistically, at the default threshold, only about
             * one-sixth of them need cloning when a table
             * doubles. The nodes they replace will be garbage
             * collectable as soon as they are no longer referenced by
             * any reader thread that may be in the midst of
             * concurrently traversing table. Entry accesses use plain
             * array indexing because they are followed by volatile
             * table write.
             */
            HashEntry<K,V>[] oldTable = table;
            int oldCapacity = oldTable.length;
            int newCapacity = oldCapacity << 1;
            threshold = (int)(newCapacity * loadFactor);
            HashEntry<K,V>[] newTable =
                (HashEntry<K,V>[]) new HashEntry[newCapacity];
            int sizeMask = newCapacity - 1;
            for (int i = 0; i < oldCapacity ; i++) {
                HashEntry<K,V> e = oldTable[i];
                if (e != null) {
                    HashEntry<K,V> next = e.next;
                    int idx = e.hash & sizeMask;
                    if (next == null)   //  Single node on list
                        newTable[idx] = e;
                    else { // Reuse consecutive sequence at same slot
                        HashEntry<K,V> lastRun = e;
                        int lastIdx = idx;
                        for (HashEntry<K,V> last = next;
                             last != null;
                             last = last.next) {
                            int k = last.hash & sizeMask;
                            if (k != lastIdx) {
                                lastIdx = k;
                                lastRun = last;
                            }
                        }
                        newTable[lastIdx] = lastRun;
                        // Clone remaining nodes
                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
                            V v = p.value;
                            int h = p.hash;
                            int k = h & sizeMask;
                            HashEntry<K,V> n = newTable[k];
                            newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
                        }
                    }
                }
            }
            int nodeIndex = node.hash & sizeMask; // add the new node
            node.setNext(newTable[nodeIndex]);
            newTable[nodeIndex] = node;
            table = newTable;
        }
     
        /**
         * Scans for a node containing given key while trying to
         * acquire lock, creating and returning one if not found. Upon
         * return, guarantees that lock is held. UNlike in most
         * methods, calls to method equals are not screened: Since
         * traversal speed doesn't matter, we might as well help warm
         * up the associated code and accesses as well.
         *
         * @return a new node if key not found, else null
         */
        private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
            HashEntry<K,V> first = entryForHash(this, hash);
            HashEntry<K,V> e = first;
            HashEntry<K,V> node = null;
            int retries = -1; // negative while locating node
            while (!tryLock()) {
                HashEntry<K,V> f; // to recheck first below
                if (retries < 0) {
                    if (e == null) {
                        if (node == null) // speculatively create node
                            node = new HashEntry<K,V>(hash, key, value, null);
                        retries = 0;
                    }
                    else if (key.equals(e.key))
                        retries = 0;
                    else
                        e = e.next;
                }
                else if (++retries > MAX_SCAN_RETRIES) {
                    lock();
                    break;
                }
                else if ((retries & 1) == 0 &&
                         (f = entryForHash(this, hash)) != first) {
                    e = first = f; // re-traverse if entry changed
                    retries = -1;
                }
            }
            return node;
        }
     
        /**
         * Scans for a node containing the given key while trying to
         * acquire lock for a remove or replace operation. Upon
         * return, guarantees that lock is held.  Note that we must
         * lock even if the key is not found, to ensure sequential
         * consistency of updates.
         */
        private void scanAndLock(Object key, int hash) {
            // similar to but simpler than scanAndLockForPut
            HashEntry<K,V> first = entryForHash(this, hash);
            HashEntry<K,V> e = first;
            int retries = -1;
            while (!tryLock()) {
                HashEntry<K,V> f;
                if (retries < 0) {
                    if (e == null || key.equals(e.key))
                        retries = 0;
                    else
                        e = e.next;
                }
                else if (++retries > MAX_SCAN_RETRIES) {
                    lock();
                    break;
                }
                else if ((retries & 1) == 0 &&
                         (f = entryForHash(this, hash)) != first) {
                    e = first = f;
                    retries = -1;
                }
            }
        }
     
        /**
         * Remove; match on key only if value null, else match both.
         */
        final V remove(Object key, int hash, Object value) {
            if (!tryLock())
                scanAndLock(key, hash);
            V oldValue = null;
            try {
                HashEntry<K,V>[] tab = table;
                int index = (tab.length - 1) & hash;
                HashEntry<K,V> e = entryAt(tab, index);
                HashEntry<K,V> pred = null;
                while (e != null) {
                    K k;
                    HashEntry<K,V> next = e.next;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        V v = e.value;
                        if (value == null || value == v || value.equals(v)) {
                            if (pred == null)
                                setEntryAt(tab, index, next);
                            else
                                pred.setNext(next);
                            ++modCount;
                            --count;
                            oldValue = v;
                        }
                        break;
                    }
                    pred = e;
                    e = next;
                }
            } finally {
                unlock();
            }
            return oldValue;
        }
     
        final boolean replace(K key, int hash, V oldValue, V newValue) {
            if (!tryLock())
                scanAndLock(key, hash);
            boolean replaced = false;
            try {
                HashEntry<K,V> e;
                for (e = entryForHash(this, hash); e != null; e = e.next) {
                    K k;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        if (oldValue.equals(e.value)) {
                            e.value = newValue;
                            ++modCount;
                            replaced = true;
                        }
                        break;
                    }
                }
            } finally {
                unlock();
            }
            return replaced;
        }
     
        final V replace(K key, int hash, V value) {
            if (!tryLock())
                scanAndLock(key, hash);
            V oldValue = null;
            try {
                HashEntry<K,V> e;
                for (e = entryForHash(this, hash); e != null; e = e.next) {
                    K k;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        oldValue = e.value;
                        e.value = value;
                        ++modCount;
                        break;
                    }
                }
            } finally {
                unlock();
            }
            return oldValue;
        }
     
        final void clear() {
            lock();
            try {
                HashEntry<K,V>[] tab = table;
                for (int i = 0; i < tab.length ; i++)
                    setEntryAt(tab, i, null);
                ++modCount;
                count = 0;
            } finally {
                unlock();
            }
        }
    }
复制代码

此处需要注意Segment的超类是ReentrantLock 这是我们在做锁的时候经常用到的类。

存储KV的HashEntry


    /**
     * ConcurrentHashMap list entry. Note that this is never exported
     * out as a user-visible Map.Entry.
     */
    static final class HashEntry<K,V> {
        final int hash;
        final K key;
        volatile V value;
        volatile HashEntry<K,V> next;
     
        HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }
     
        /**
         * Sets next field with volatile write semantics.  (See above
         * about use of putOrderedObject.)
         */
        final void setNext(HashEntry<K,V> n) {
            UNSAFE.putOrderedObject(this, nextOffset, n);
        }
     
        // Unsafe mechanics
        static final sun.misc.Unsafe UNSAFE;
        static final long nextOffset;
        static {
            try {
                UNSAFE = sun.misc.Unsafe.getUnsafe();
                Class k = HashEntry.class;
                nextOffset = UNSAFE.objectFieldOffset
                    (k.getDeclaredField("next"));
            } catch (Exception e) {
                throw new Error(e);
            }
        }
    }
复制代码

确实到处可见UNSAFE的使用

Hash


    /**
     * Applies a supplemental hash function to a given hashCode, which
     * defends against poor quality hash functions.  This is critical
     * because ConcurrentHashMap uses power-of-two length hash tables,
     * that otherwise encounter collisions for hashCodes that do not
     * differ in lower or upper bits.
     */
    private int hash(Object k) {
        int h = hashSeed;
     
        if ((0 != h) && (k instanceof String)) {
            return sun.misc.Hashing.stringHash32((String) k);
        }
     
        h ^= k.hashCode();
     
        // Spread bits to regularize both segment and index locations,
        // using variant of single-word Wang/Jenkins hash.
        h += (h <<  15) ^ 0xffffcd7d;
        h ^= (h >>> 10);
        h += (h <<   3);
        h ^= (h >>>  6);
        h += (h <<   2) + (h << 14);
        return h ^ (h >>> 16);
    }
复制代码

此处采用了jenkins hash blog.youkuaiyun.com/yueyedeai/a…

从这里的hash算法明显比HashMap的hash复杂较多 ===》下文将利用该hash值做为定位segment和hashEntry的依据

put


    /**
     * Maps the specified key to the specified value in this table.
     * Neither the key nor the value can be null.
     *
     * <p> The value can be retrieved by calling the <tt>get</tt> method
     * with a key that is equal to the original key.
     *
     * @param key key with which the specified value is to be associated
     * @param value value to be associated with the specified key
     * @return the previous value associated with <tt>key</tt>, or
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
     * @throws NullPointerException if the specified key or value is null
     */
    @SuppressWarnings("unchecked")
    public V put(K key, V value) {
        Segment<K,V> s;
        if (value == null)
            throw new NullPointerException();
        int hash = hash(key);
        int j = (hash >>> segmentShift) & segmentMask;
        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
            s = ensureSegment(j);
        return s.put(key, hash, value, false);
    }
复制代码

此处发现ConcurrentHashMap的value不支持null(这个后面分析)

同样其对应的key也不可以为null(hash方法不支持null)

首先需要定位一个正常的key放入到对应的Segment中将key计算出的hash值不带符号右移(hash >>> segmentShift) 该值在默认情况下为28 也就是将其右移28位【对于hash要求较高,最后几位必须尽可能的将元素分开】


    // Find power-of-two sizes best matching arguments
    int sshift = 0;
    int ssize = 1;
    while (ssize < concurrencyLevel) {
        ++sshift;
        ssize <<= 1;
    }
    this.segmentShift = 32 - sshift;
    this.segmentMask = ssize - 1;
复制代码

这边还有依然是UNSAFE的小技巧


    int j = (hash >>> segmentShift) & segmentMask;
    if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
         (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
        s = ensureSegment(j);
复制代码

当找到对应的Segment后将KV放入Segment。

可以将此时的Segment当成原先的HashMap理解


    final V put(K key, int hash, V value, boolean onlyIfAbsent) {
        HashEntry<K,V> node = tryLock() ? null :
            scanAndLockForPut(key, hash, value);
        V oldValue;
        try {
            HashEntry<K,V>[] tab = table;
            int index = (tab.length - 1) & hash;
            HashEntry<K,V> first = entryAt(tab, index);
            for (HashEntry<K,V> e = first;;) {
                if (e != null) {
                    K k;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        oldValue = e.value;
                        if (!onlyIfAbsent) {
                            e.value = value;
                            ++modCount;
                        }
                        break;
                    }
                    e = e.next;
                }
                else {
                    if (node != null)
                        node.setNext(first);
                    else
                        node = new HashEntry<K,V>(hash, key, value, first);
                    int c = count + 1;
                    if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                        rehash(node);
                    else
                        setEntryAt(tab, index, node);
                    ++modCount;
                    count = c;
                    oldValue = null;
                    break;
                }
            }
        } finally {
            unlock();
        }
        return oldValue;
    }
     
    /**
复制代码

同样ConcurrentHashMap的构造函数中对于HashEntry的容量也做了计算,每个Segment的容量


    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    int c = initialCapacity / ssize;
    if (c * ssize < initialCapacity)
        ++c;
    int cap = MIN_SEGMENT_TABLE_CAPACITY;
    while (cap < c)
        cap <<= 1;
    // create segments and segments[0]
    Segment<K,V> s0 =
        new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                         (HashEntry<K,V>[])new HashEntry[cap]);
    Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
复制代码

那么默认情况下cap为2(MIN)

具体来看一下Segment的put方法


    final V put(K key, int hash, V value, boolean onlyIfAbsent) {
        HashEntry<K,V> node = tryLock() ? null :
            scanAndLockForPut(key, hash, value);
        V oldValue;
        try {
            HashEntry<K,V>[] tab = table;
            int index = (tab.length - 1) & hash;
            HashEntry<K,V> first = entryAt(tab, index);
            for (HashEntry<K,V> e = first;;) {
                if (e != null) {
                    K k;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        oldValue = e.value;
                        if (!onlyIfAbsent) {
                            e.value = value;
                            ++modCount;
                        }
                        break;
                    }
                    e = e.next;
                }
                else {
                    if (node != null)
                        node.setNext(first);
                    else
                        node = new HashEntry<K,V>(hash, key, value, first);
                    int c = count + 1;
                    if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                        rehash(node);
                    else
                        setEntryAt(tab, index, node);
                    ++modCount;
                    count = c;
                    oldValue = null;
                    break;
                }
            }
        } finally {
            unlock();
        }
        return oldValue;
    }
复制代码

由于Segment本身也是ReentrantLock 那么可以支持tryLock等方法。

首先尝试加锁(调用自身,只是针对本Segment,其他segment读写均不受影响),如果加锁不成功的话则在这期间可以找到需要放置的HashEntry的next指针(或者创建的HashEntry节点)


    /**
     * Gets the table entry for the given segment and hash
     */
    @SuppressWarnings("unchecked")
    static final <K,V> HashEntry<K,V> entryForHash(Segment<K,V> seg, int h) {
        HashEntry<K,V>[] tab;
        return (seg == null || (tab = seg.table) == null) ? null :
            (HashEntry<K,V>) UNSAFE.getObjectVolatile
            (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
    }
     
    /**
     * Scans for a node containing given key while trying to
     * acquire lock, creating and returning one if not found. Upon
     * return, guarantees that lock is held. UNlike in most
     * methods, calls to method equals are not screened: Since
     * traversal speed doesn't matter, we might as well help warm
     * up the associated code and accesses as well.
     *
     * @return a new node if key not found, else null
     */
    private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
        HashEntry<K,V> first = entryForHash(this, hash);
        HashEntry<K,V> e = first;
        HashEntry<K,V> node = null;
        int retries = -1; // negative while locating node
        while (!tryLock()) {
            HashEntry<K,V> f; // to recheck first below
            if (retries < 0) {
                if (e == null) {
                    if (node == null) // speculatively create node
                        node = new HashEntry<K,V>(hash, key, value, null);
                    retries = 0;
                }
                else if (key.equals(e.key))
                    retries = 0;
                else
                    e = e.next;
            }
            else if (++retries > MAX_SCAN_RETRIES) {
                lock();
                break;
            }
            else if ((retries & 1) == 0 &&
                     (f = entryForHash(this, hash)) != first) {
                e = first = f; // re-traverse if entry changed
                retries = -1;
            }
        }
        return node;
    }
复制代码

根据hash值和当前的Segment的HashEntry的数组大小进行hash 找到对应的slot进行放置。期间自然也会有和HashMap一般的rehash(当count超过了阈值)


    /**
     * Doubles size of table and repacks entries, also adding the
     * given node to new table
     */
    @SuppressWarnings("unchecked")
    private void rehash(HashEntry<K,V> node) {
        /*
         * Reclassify nodes in each list to new table.  Because we
         * are using power-of-two expansion, the elements from
         * each bin must either stay at same index, or move with a
         * power of two offset. We eliminate unnecessary node
         * creation by catching cases where old nodes can be
         * reused because their next fields won't change.
         * Statistically, at the default threshold, only about
         * one-sixth of them need cloning when a table
         * doubles. The nodes they replace will be garbage
         * collectable as soon as they are no longer referenced by
         * any reader thread that may be in the midst of
         * concurrently traversing table. Entry accesses use plain
         * array indexing because they are followed by volatile
         * table write.
         */
        HashEntry<K,V>[] oldTable = table;
        int oldCapacity = oldTable.length;
        int newCapacity = oldCapacity << 1;
        threshold = (int)(newCapacity * loadFactor);
        HashEntry<K,V>[] newTable =
            (HashEntry<K,V>[]) new HashEntry[newCapacity];
        int sizeMask = newCapacity - 1;
        for (int i = 0; i < oldCapacity ; i++) {
            HashEntry<K,V> e = oldTable[i];
            if (e != null) {
                HashEntry<K,V> next = e.next;
                int idx = e.hash & sizeMask;
                if (next == null)   //  Single node on list
                    newTable[idx] = e;
                else { // Reuse consecutive sequence at same slot
                    HashEntry<K,V> lastRun = e;
                    int lastIdx = idx;
                    for (HashEntry<K,V> last = next;
                         last != null;
                         last = last.next) {
                        int k = last.hash & sizeMask;
                        if (k != lastIdx) {
                            lastIdx = k;
                            lastRun = last;
                        }
                    }
                    newTable[lastIdx] = lastRun;
                    // Clone remaining nodes
                    for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
                        V v = p.value;
                        int h = p.hash;
                        int k = h & sizeMask;
                        HashEntry<K,V> n = newTable[k];
                        newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
                    }
                }
            }
        }
        int nodeIndex = node.hash & sizeMask; // add the new node
        node.setNext(newTable[nodeIndex]);
        newTable[nodeIndex] = node;
        table = newTable;
    }
复制代码

基本上就是旧的Segment容量扩大至2倍(注意姿势扩充本Segment)那么其他的不会扩充,不会出现其他的锁的情况。

最终完成操作后需要释放lock

get


    /**
     * Returns the value to which the specified key is mapped,
     * or {@code null} if this map contains no mapping for the key.
     *
     * <p>More formally, if this map contains a mapping from a key
     * {@code k} to a value {@code v} such that {@code key.equals(k)},
     * then this method returns {@code v}; otherwise it returns
     * {@code null}.  (There can be at most one such mapping.)
     *
     * @throws NullPointerException if the specified key is null
     */
    public V get(Object key) {
        Segment<K,V> s; // manually integrate access methods to reduce overhead
        HashEntry<K,V>[] tab;
        int h = hash(key);
        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
            (tab = s.table) != null) {
            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
                 e != null; e = e.next) {
                K k;
                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                    return e.value;
            }
        }
        return null;
    }
复制代码

根据hash直接定位到Segment在定位到HashEntry进行拉链式寻找

remove


    /**
     * Removes the key (and its corresponding value) from this map.
     * This method does nothing if the key is not in the map.
     *
     * @param  key the key that needs to be removed
     * @return the previous value associated with <tt>key</tt>, or
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
     * @throws NullPointerException if the specified key is null
     */
    public V remove(Object key) {
        int hash = hash(key);
        Segment<K,V> s = segmentForHash(hash);
        return s == null ? null : s.remove(key, hash, null);
    }
     
    /**
     * {@inheritDoc}
     *
     * @throws NullPointerException if the specified key is null
     */
    public boolean remove(Object key, Object value) {
        int hash = hash(key);
        Segment<K,V> s;
        return value != null && (s = segmentForHash(hash)) != null &&
            s.remove(key, hash, value) != null;
    }
复制代码

同样的道理找到对应的Segment做HashEntry的处理 区别在于提供了remove原子版本


    * <pre>
    *   if (map.containsKey(key) && map.get(key).equals(value)) {
    *       map.remove(key);
    *       return true;
    *   } else return false;</pre>
复制代码

size

由于采用了多个Segment管理此时无法直接获得ConcurrentHashMap的size

需要累计获取


    /**
     * Returns the number of key-value mappings in this map.  If the
     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
     * <tt>Integer.MAX_VALUE</tt>.
     *
     * @return the number of key-value mappings in this map
     */
    public int size() {
        // Try a few times to get accurate count. On failure due to
        // continuous async changes in table, resort to locking.
        final Segment<K,V>[] segments = this.segments;
        int size;
        boolean overflow; // true if size overflows 32 bits
        long sum;         // sum of modCounts
        long last = 0L;   // previous sum
        int retries = -1; // first iteration isn't retry
        try {
            for (;;) {
                if (retries++ == RETRIES_BEFORE_LOCK) {
                    for (int j = 0; j < segments.length; ++j)
                        ensureSegment(j).lock(); // force creation
                }
                sum = 0L;
                size = 0;
                overflow = false;
                for (int j = 0; j < segments.length; ++j) {
                    Segment<K,V> seg = segmentAt(segments, j);
                    if (seg != null) {
                        sum += seg.modCount;
                        int c = seg.count;
                        if (c < 0 || (size += c) < 0)
                            overflow = true;
                    }
                }
                if (sum == last)
                    break;
                last = sum;
            }
        } finally {
            if (retries > RETRIES_BEFORE_LOCK) {
                for (int j = 0; j < segments.length; ++j)
                    segmentAt(segments, j).unlock();
            }
        }
        return overflow ? Integer.MAX_VALUE : size;
    }
复制代码

此处有个很有意思的操作。首先获取所有Segment的count之和。循环一次如果上次的结果和本次的结果相同则直接返回size(性能不错,可能大多数情况也能覆盖)

否则最多重复三次,当第三次仍然不相同,则开始加锁。当数据发生溢出的时候直接返回Integer.MAX_VALUE。

isEmpty


    /**
     * Returns <tt>true</tt> if this map contains no key-value mappings.
     *
     * @return <tt>true</tt> if this map contains no key-value mappings
     */
    public boolean isEmpty() {
        /*
         * Sum per-segment modCounts to avoid mis-reporting when
         * elements are concurrently added and removed in one segment
         * while checking another, in which case the table was never
         * actually empty at any point. (The sum ensures accuracy up
         * through at least 1<<31 per-segment modifications before
         * recheck.)  Methods size() and containsValue() use similar
         * constructions for stability checks.
         */
        long sum = 0L;
        final Segment<K,V>[] segments = this.segments;
        for (int j = 0; j < segments.length; ++j) {
            Segment<K,V> seg = segmentAt(segments, j);
            if (seg != null) {
                if (seg.count != 0)
                    return false;
                sum += seg.modCount;
            }
        }
        if (sum != 0L) { // recheck unless no modifications
            for (int j = 0; j < segments.length; ++j) {
                Segment<K,V> seg = segmentAt(segments, j);
                if (seg != null) {
                    if (seg.count != 0)
                        return false;
                    sum -= seg.modCount;
                }
            }
            if (sum != 0L)
                return false;
        }
        return true;
    }
复制代码

该方法没有了任何和锁相关的操作,因此性能OK。直接判断多个Segment有一个count不为0就直接返回false。

这也是强调集合的判断中判断是否为空不要使用size()!=0来,否则可能性能不佳(size可能要加锁)

iterator


    abstract class HashIterator {
        int nextSegmentIndex;
        int nextTableIndex;
        HashEntry<K,V>[] currentTable;
        HashEntry<K, V> nextEntry;
        HashEntry<K, V> lastReturned;
     
        HashIterator() {
            nextSegmentIndex = segments.length - 1;
            nextTableIndex = -1;
            advance();
        }
     
        /**
         * Set nextEntry to first node of next non-empty table
         * (in backwards order, to simplify checks).
         */
        final void advance() {
            for (;;) {
                if (nextTableIndex >= 0) {
                    if ((nextEntry = entryAt(currentTable,
                                             nextTableIndex--)) != null)
                        break;
                }
                else if (nextSegmentIndex >= 0) {
                    Segment<K,V> seg = segmentAt(segments, nextSegmentIndex--);
                    if (seg != null && (currentTable = seg.table) != null)
                        nextTableIndex = currentTable.length - 1;
                }
                else
                    break;
            }
        }
     
        final HashEntry<K,V> nextEntry() {
            HashEntry<K,V> e = nextEntry;
            if (e == null)
                throw new NoSuchElementException();
            lastReturned = e; // cannot assign until after null check
            if ((nextEntry = e.next) == null)
                advance();
            return e;
        }
     
        public final boolean hasNext() { return nextEntry != null; }
        public final boolean hasMoreElements() { return nextEntry != null; }
     
        public final void remove() {
            if (lastReturned == null)
                throw new IllegalStateException();
            ConcurrentHashMap.this.remove(lastReturned.key);
            lastReturned = null;
        }
    }
    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
        public Iterator<Map.Entry<K,V>> iterator() {
            return new EntryIterator();
        }
        public boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
            V v = ConcurrentHashMap.this.get(e.getKey());
            return v != null && v.equals(e.getValue());
        }
        public boolean remove(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
        }
        public int size() {
            return ConcurrentHashMap.this.size();
        }
        public boolean isEmpty() {
            return ConcurrentHashMap.this.isEmpty();
        }
        public void clear() {
            ConcurrentHashMap.this.clear();
        }
    }
复制代码
核心在于其advance。查看注释也看到其是按照倒序进行遍历的,为了减少一些check(常用的技巧)
当判断是否存在元素(遍历是否结束时)
复制代码

    final HashEntry<K,V> nextEntry() {
        HashEntry<K,V> e = nextEntry;
        if (e == null)
            throw new NoSuchElementException();
        lastReturned = e; // cannot assign until after null check
        if ((nextEntry = e.next) == null)
            advance();
        return e;
    }
     
    public final boolean hasNext() { return nextEntry != null; }
复制代码

其中nextEntry是将获取当前table倒序遍历后的entry结果直到数据index<0

OK 我们回到为啥ConcurrentHashMap不可以放置null key

来自作者的解答 [concurrency-interest] Handling Null Values in ConcurrentHashMap

The main reason that nulls aren't allowed in ConcurrentMaps (ConcurrentHashMaps, ConcurrentSkipListMaps) is that ambiguities that may be just barely tolerable in non-concurrent maps can't be accommodated. The main one is that if map.get(key) returns null, you can't detect whether the key explicitly maps to null vs the key isn't mapped. In a non-concurrent map, you can check this via map.contains(key), but in a concurrent one, the map might have changed between calls.

参考

http://ifeve.com/concurrenthashmap/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值