作业

本文详细介绍了K-means聚类算法的实现过程,包括初始化聚类中心、分配数据点到最近的聚类中心、更新聚类中心以及判断算法收敛的步骤。通过Python代码示例,展示了如何使用NumPy库进行数据生成和处理,以及如何实现K-means算法的核心逻辑。
import numpy as np
x = np.random.randint(1,50,[20,1])
y = np.zeros(20)
k = 3
#1) 选取数据空间中的K个对象作为初始中心,每个对象代表一个聚类中心;
def initcen(x,k):
    return x[:k]
#2) 对于样本中的数据对象,根据它们与这些聚类中心的欧氏距离,按距离最近的准则将它们分到距离它们最近的聚类中心(最相似)所对应的类;
def nearest(kc,i):
    d = abs(kc-i)
    w = np.where(d == np.min(d))
    return w[0][0]
 
def xclassify(x,y,kc):
    for i in range(x.shape[0]):
        y[i] = nearest(kc,x[i])
        return y
 
#3) 更新聚类中心:将每个类别中所有对象所对应的均值作为该类别的聚类中心,计算目标函数的值;
 
def kcmean(x,y,kc,k):
    l = list(kc)
    flag = False
    for c in range(k):
        m = np.where(y ==0)
        n = np.mean(x[m])
        if l[c] != n:
            l[c] = n
            flag = True
            print(l,flag)
    return (np.array(l),flag)
#4) 判断聚类中心和目标函数的值是否发生改变,若不变,则输出结果,若改变,则返回2)
kc = initcen(x,k)
 
flag = True
print(x,y,kc,flag)
while flag:
    y = xclassify(x,y,kc)
    kc,flag = kcmean(x,y,kc,k)
print(y,kc)

  

转载于:https://www.cnblogs.com/PMAM/p/9944591.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值