Spark自定义维护kafka的offset到zk

本文详细介绍了如何使用Apache Spark Streaming与Kafka进行集成,实现数据流的实时处理。通过具体的代码示例,展示了如何配置Spark Conf,创建Streaming Context,并设置Kafka参数来消费指定主题的数据。此外,还深入探讨了如何从Zookeeper读取和保存offset,确保数据的连续性和一致性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import kafka.common.TopicAndPartition
import kafka.message.MessageAndMetadata
import kafka.serializer.StringDecoder
import kafka.utils.ZkUtils
import org.I0Itec.zkclient.ZkClient
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka.{HasOffsetRanges, KafkaUtils}
import org.apache.spark.streaming.{Seconds, StreamingContext}

object DirectKafkaExample {

  def main(args: Array[String]) {

    val ssc =  setupSsc
    ssc.start()
    ssc.awaitTermination()


  }


  def setupSsc(): StreamingContext ={

    val conf = new SparkConf().setAppName("CustomDirectKafkaExample").setMaster("local")
    val kafkaParams:Map[String,String] = Map("metadata.broker.list" -> "slave1:9092,slave2:9092,slave3:9092")
    val topicsSet = Set("testha")
    val ssc = new StreamingContext(conf, Seconds(5))

    val messages = createCustomDirectKafkaStream(ssc,kafkaParams,"master0:2181,slave1:2181,slave3:2181","/mysefloffset", topicsSet).map(_._2)

    messages.foreachRDD{rdd => {
      rdd.foreachPartition { partitionOfRecords =>
        if(partitionOfRecords.isEmpty)
          {
            println("此分区数据为空.")
          }
          else
          {
            partitionOfRecords.foreach(println(_))
          }
      }

     }
    }
    ssc
  }


  def createCustomDirectKafkaStream(ssc: StreamingContext, kafkaParams: Map[String, String], zkHosts: String
                                    , zkPath: String, topics: Set[String]): InputDStream[(String, String)] = {
    val topic = topics.last
    val zkClient = new ZkClient(zkHosts, 30000, 30000)
    val storedOffsets = readOffsets(zkClient,zkHosts, zkPath, topic)

    val kafkaStream = storedOffsets match {
          case None => //最新的offset
            KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)

          case Some(fromOffsets) => // offset从上次继续开始
            val messageHandler = (mmd: MessageAndMetadata[String, String]) => (mmd.key, mmd.message)
            KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder,(String, String)](ssc, kafkaParams, fromOffsets, messageHandler)
        }

    // save the offsets
    kafkaStream.foreachRDD(rdd => saveOffsets(zkClient,zkHosts, zkPath, rdd))
    kafkaStream

  }



  private def readOffsets(zkClient: ZkClient,zkHosts:String, zkPath: String, topic: String):Option[Map[TopicAndPartition, Long]] = {

     println("开始读取从zk中读取offset")

    val stopwatch = new Stopwatch()

    val (offsetsRangesStrOpt, _) = ZkUtils.readDataMaybeNull(zkClient, zkPath)
    offsetsRangesStrOpt match {
      case Some(offsetsRangesStr) =>
          println(s"读取到的offset范围: ${offsetsRangesStr}")
        val offsets = offsetsRangesStr.split(",")
          .map(s => s.split(":"))
          .map { case Array(partitionStr, offsetStr) => (TopicAndPartition(topic, partitionStr.toInt) -> offsetStr.toLong) }
          .toMap
          println("读取offset结束: " + stopwatch)
        Some(offsets)
      case None =>
          println("读取offset结束: " + stopwatch)
        None
    }
  }

  private def saveOffsets(zkClient: ZkClient,zkHosts:String, zkPath: String, rdd: RDD[_]): Unit = {
    println("开始保存offset到zk中去")

    val stopwatch = new Stopwatch()
    val offsetsRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges

    //分区,offset
    offsetsRanges.foreach(offsetRange => println(s"Using ${offsetRange}"))

    val offsetsRangesStr = offsetsRanges.map(offsetRange => s"${offsetRange.partition}:${offsetRange.fromOffset}").mkString(",")
     println("保存的偏移量范围:"+ offsetsRangesStr)
    ZkUtils.updatePersistentPath(zkClient, zkPath, offsetsRangesStr)
    println("保存结束,耗时 :" + stopwatch)
  }

  class Stopwatch {
    private val start = System.currentTimeMillis()
    override def toString() = (System.currentTimeMillis() - start) + " ms"
  }


}

转载于:https://my.oschina.net/hblt147/blog/2876709

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值