In [1]: df
Out[1]:
Sp Mt Value count
0 MM1 S1 a 3
1 MM1 S1 n 2
2 MM1 S3 cb 5
3 MM2 S3 mk 8
4 MM2 S4 bg 10
5 MM2 S4 dgd 1
6 MM4 S2 rd 2
7 MM4 S2 cb 2
8 MM4 S2 uyi 7
In [2]: df.groupby(['Mt'], sort=False)['count'].max()
Out[2]:
Mt
S1 3
S3 8
S4 10
S2 7
Name: count
要获得原始DF的索引,您可以执行以下操作:
In [3]: idx = df.groupby(['Mt'])['count'].transform(max) == df['count']
In [4]: df[idx]
Out[4]:
Sp Mt Value count
0 MM1 S1 a 3
3 MM2 S3 mk 8
4 MM2 S4 bg 10
8 MM4 S2 uyi 7
请注意,如果每个组有多个最大值,则将返回所有值.
更新
在冰雹玛丽的机会,这是OP要求的:
In [5]: df['count_max'] = df.groupby(['Mt'])['count'].transform(max)
In [6]: df
Out[6]:
Sp Mt Value count count_max
0 MM1 S1 a 3 3
1 MM1 S1 n 2 3
2 MM1 S3 cb 5 8
3 MM2 S3 mk 8 8
4 MM2 S4 bg 10 10
5 MM2 S4 dgd 1 10
6 MM4 S2 rd 2 7
7 MM4 S2 cb 2 7
8 MM4 S2 uyi 7 7
通过df.groupby(['Mt'])['count'].max(),可以获取每组'Mt'中的最大'count'值。若要保留原始DataFrame的索引,可以使用transform(max)与原始'count'列比较。如果每个组有多个最大值,将会返回所有最大值的行。
316

被折叠的 条评论
为什么被折叠?



