Sorting It All Out
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 14966 | Accepted: 5062 |
Description
An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
Input
Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
Output
For each problem instance, output consists of one line. This line should be one of the following three:
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sample Input
4 6
A<B
A<C
B<C
C<D
B<D
A<B
3 2
A<B
B<A
26 1
A<Z
0 0
Sample Output
Sorted sequence determined after 4 relations: ABCD.
Inconsistency found after 2 relations.
Sorted sequence cannot be determined.
解体思路: 拓扑排序,参考了鸵鸟的解体。第一次做topsort,还有些生疏
topsort()
{
for all nodes in graph:
find zero indrgee nodes;
if nodes=0:
loop occurs;
else nodes>2
ambigous nodes
else
normal;
extract nodes from graph;
extract related edges of nodes, and re-calculate indegree.
}
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
using namespace std;
/*
return "AB..." done
"ambigous"
"inconsistency"
*/
string topSort(bool map[26][26], int indegree[26], int n)
{
int indegreeCpy[26];
int zeroIndegreeNodes;
string rlt;
bool ambigous;
int zeroNodes;
//init
for(int i=0; i<n; i++)
indegreeCpy[i]=indegree[i];
rlt="";
ambigous=false;
//sort
for(int i=1; i<=n; i++)
{
//find zero indegree nodes
zeroIndegreeNodes=0;
for(int j=0; j<n; j++)
{
if(indegreeCpy[j]==0)
{
zeroIndegreeNodes++;
zeroNodes=j;
}
}
if(zeroIndegreeNodes==0)
{
rlt="inconsistency";
return rlt; //loop occurs
}
else if(zeroIndegreeNodes>1)
{
ambigous=true;
}
//extract zeroNodes
indegreeCpy[zeroNodes]=-1;
for(int j=0; j<n; j++)
{
if(map[zeroNodes][j])
{
indegreeCpy[j]--;
}
}
rlt+=string(1,char(zeroNodes+'A'));
}
if(ambigous)
rlt="ambigous";
return rlt;
}
int main()
{
int n,m;
bool map[26][26];
int indegree[26];
string rlt;
int step;
char ch1,ch2,chSign;
while(scanf("%d%d",&n,&m)!=EOF && n!=0 && m!=0)
{
//init
memset(map,0,sizeof(map));
memset(indegree,0,sizeof(indegree));
step=1;
rlt="";
//solve
for(int i=1; i<=m; i++)
{
getchar();
scanf("%c%c%c",&ch1,&chSign,&ch2);
map[ch1-'A'][ch2-'A']=true;
indegree[ch2-'A']++;
if(rlt=="" || rlt=="ambigous")
{
rlt=topSort(map,indegree,n);
step=i;
}
}
//rlt
if(rlt=="inconsistency")
cout << "Inconsistency found after "<<step<<" relations.\n";
else if(rlt=="ambigous")
cout << "Sorted sequence cannot be determined.\n";
else
cout << "Sorted sequence determined after "<<step<<" relations: "<<rlt<<".\n";
}
return 0;
}