> dataset = matrix(c(1,2,
+ 1.2,2,
+ 8,9,
+ 0.9,1.8,
+ 7,10,
+ 8.8,9.2), nrow=6, byrow=T)
> dataset
[,1] [,2]
[1,] 1.0 2.0
[2,] 1.2 2.0
[3,] 8.0 9.0
[4,] 0.9 1.8
[5,] 7.0 10.0
[6,] 8.8 9.2
> kmeans(dataset, 2, iter.max = 20)
K-means clustering with 2 clusters of sizes 3, 3
Cluster means:
[,1] [,2]
1 1.033333 1.933333
2 7.933333 9.400000
Clustering vector:
[1] 1 1 2 1 2 2
Within cluster sum of squares by cluster:
[1] 0.07333333 2.18666667
(between_SS / total_SS = 98.6 %)
Available components:
[1] "cluster" "centers" "totss" "withinss" "tot.withinss" "betweenss"
[7] "size"
Cluster means:
[,1] [,2]
1 1.033333 1.933333
2 7.933333 9.400000
6个数据的簇标号分别是:
Clustering vector:
[1] 1 1 2 1 2 2
可视化:
> result = kmeans(dataset, 2, iter.max = 20)
> plot(c(dataset[,1]), c(dataset[,2]), col=result$cluster)

参考:
http://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html