poj 1742 roads

本文介绍了一个寻找从城市1到城市N的最短路径的问题,考虑到路径长度和费用约束。通过遍历所有可能的路径并应用特定算法来找到既不超过预算又能达到最短距离的路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

/*
C:ROADS

    查看
    提交
    统计
    提问

总时间限制:
    1000ms
内存限制:
    65536kB

描述
    N cities named with numbers 1 ... N are connected with one-way roads. Each road has two parameters associated with it : the road length and the toll that needs to be paid for the road (expressed in the number of coins).
    Bob and Alice used to live in the city 1. After noticing that Alice was cheating in the card game they liked to play, Bob broke up with her and decided to move away - to the city N. He wants to get there as quickly as possible, but he is short on cash.

    We want to help Bob to find the shortest path from the city 1 to the city N that he can afford with the amount of money he has.
输入
    The first line of the input contains the integer K, 0 <= K <= 10000, maximum number of coins that Bob can spend on his way.
    The second line contains the integer N, 2 <= N <= 100, the total number of cities.

    The third line contains the integer R, 1 <= R <= 10000, the total number of roads.

    Each of the following R lines describes one road by specifying integers S, D, L and T separated by single blank characters :

        S is the source city, 1 <= S <= N
        D is the destination city, 1 <= D <= N
        L is the road length, 1 <= L <= 100
        T is the toll (expressed in the number of coins), 0 <= T <=100


    Notice that different roads may have the same source and destination cities.
输出
    The first and the only line of the output should contain the total length of the shortest path from the city 1 to the city N whose total toll is less than or equal K coins.
    If such path does not exist, only number -1 should be written to the output.
样例输入

5
6
7
1 2 2 3
2 4 3 3
3 4 2 4
1 3 4 1
4 6 2 1
3 5 2 0
5 4 3 2

样例输出

    11

*/

#include <cstdio>
#include <cstdlib>
#include <vector>
#include <algorithm>
#include <cstring>
#include <string>
using namespace std;
int k = 0, cityn = 0, roadn = 0;
int mi = 2000000000;
int cos = 0, di = 0;
bool v[105] = {0};
struct road
{
    int s;
    int d;
    int l;
    int t;
};
road r[10005];

vector<road> nu[105][105];

void move(int n)
{
    if(cos > k)
    {
        return;
    }
    if(di >= mi)
    {
        return;
    }
    if(n == cityn)
    {
        if(cos <= k)
        {
            int tep = di;
            if(tep < mi) mi = tep;
        }
        return;
    }



    for(int i = cityn; i >= 1; --i)
    {
        if(!v[i] && !nu[n][i].empty())//linknum[n][i])
        {
            for(vector<road>::iterator k = nu[n][i].begin(); k != nu[n][i].end(); k++)
            {
                v[i] = 1;
                cos += k->t;
                di += k->l;
                move(i);
                di -= k->l;
                cos -= k->t;
                v[i] = 0;

            }
        }
    }
    return;
}

int mycp( const road &a, const road &b )
{
    if( a.l < b.l )
        return 1;
    else if( a.l == b.l )
    {
        if( a.t < b.t )
            return 1;
        else
            return 0;
    }
    else
        return 0;
}


int main()
{
    scanf("%d%d%d", &k, &cityn, &roadn);
    for(int i = 1; i <= roadn; ++i)
    {
        scanf("%d%d%d%d", &r[i].s, &r[i].d, &r[i].l, &r[i].t);
        nu[r[i].s][r[i].d].push_back(r[i]);
    }

    for(int i = 1; i <= cityn; ++i)
        for(int j = 1; j <= cityn; ++j)
            sort(nu[i][j].begin(), nu[i][j].end(), mycp);


    for(int i = 1; i <= cityn; ++i)
        for(int j = 1; j <= cityn; ++j)
            for(vector<road>::iterator k = nu[i][j].begin(); k != nu[i][j].end(); k++)
            {
                while(k != nu[i][j].end() - 1 && k->l <= (k+1)->l && k->t <= (k+1)->t)
                {
                    nu[i][j].erase(k + 1);
                }
            }
    v[1] = 1;
    move(1);
    if(mi >= 1000000) mi = -1;
    printf("%d\n", mi);
    return 0;
}

转载于:https://my.oschina.net/locusxt/blog/136374

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值