poj 1742 roads

本文介绍了一个寻找从城市1到城市N的最短路径的问题,考虑到路径长度和费用约束。通过遍历所有可能的路径并应用特定算法来找到既不超过预算又能达到最短距离的路径。
/*
C:ROADS

    查看
    提交
    统计
    提问

总时间限制:
    1000ms
内存限制:
    65536kB

描述
    N cities named with numbers 1 ... N are connected with one-way roads. Each road has two parameters associated with it : the road length and the toll that needs to be paid for the road (expressed in the number of coins).
    Bob and Alice used to live in the city 1. After noticing that Alice was cheating in the card game they liked to play, Bob broke up with her and decided to move away - to the city N. He wants to get there as quickly as possible, but he is short on cash.

    We want to help Bob to find the shortest path from the city 1 to the city N that he can afford with the amount of money he has.
输入
    The first line of the input contains the integer K, 0 <= K <= 10000, maximum number of coins that Bob can spend on his way.
    The second line contains the integer N, 2 <= N <= 100, the total number of cities.

    The third line contains the integer R, 1 <= R <= 10000, the total number of roads.

    Each of the following R lines describes one road by specifying integers S, D, L and T separated by single blank characters :

        S is the source city, 1 <= S <= N
        D is the destination city, 1 <= D <= N
        L is the road length, 1 <= L <= 100
        T is the toll (expressed in the number of coins), 0 <= T <=100


    Notice that different roads may have the same source and destination cities.
输出
    The first and the only line of the output should contain the total length of the shortest path from the city 1 to the city N whose total toll is less than or equal K coins.
    If such path does not exist, only number -1 should be written to the output.
样例输入

5
6
7
1 2 2 3
2 4 3 3
3 4 2 4
1 3 4 1
4 6 2 1
3 5 2 0
5 4 3 2

样例输出

    11

*/

#include <cstdio>
#include <cstdlib>
#include <vector>
#include <algorithm>
#include <cstring>
#include <string>
using namespace std;
int k = 0, cityn = 0, roadn = 0;
int mi = 2000000000;
int cos = 0, di = 0;
bool v[105] = {0};
struct road
{
    int s;
    int d;
    int l;
    int t;
};
road r[10005];

vector<road> nu[105][105];

void move(int n)
{
    if(cos > k)
    {
        return;
    }
    if(di >= mi)
    {
        return;
    }
    if(n == cityn)
    {
        if(cos <= k)
        {
            int tep = di;
            if(tep < mi) mi = tep;
        }
        return;
    }



    for(int i = cityn; i >= 1; --i)
    {
        if(!v[i] && !nu[n][i].empty())//linknum[n][i])
        {
            for(vector<road>::iterator k = nu[n][i].begin(); k != nu[n][i].end(); k++)
            {
                v[i] = 1;
                cos += k->t;
                di += k->l;
                move(i);
                di -= k->l;
                cos -= k->t;
                v[i] = 0;

            }
        }
    }
    return;
}

int mycp( const road &a, const road &b )
{
    if( a.l < b.l )
        return 1;
    else if( a.l == b.l )
    {
        if( a.t < b.t )
            return 1;
        else
            return 0;
    }
    else
        return 0;
}


int main()
{
    scanf("%d%d%d", &k, &cityn, &roadn);
    for(int i = 1; i <= roadn; ++i)
    {
        scanf("%d%d%d%d", &r[i].s, &r[i].d, &r[i].l, &r[i].t);
        nu[r[i].s][r[i].d].push_back(r[i]);
    }

    for(int i = 1; i <= cityn; ++i)
        for(int j = 1; j <= cityn; ++j)
            sort(nu[i][j].begin(), nu[i][j].end(), mycp);


    for(int i = 1; i <= cityn; ++i)
        for(int j = 1; j <= cityn; ++j)
            for(vector<road>::iterator k = nu[i][j].begin(); k != nu[i][j].end(); k++)
            {
                while(k != nu[i][j].end() - 1 && k->l <= (k+1)->l && k->t <= (k+1)->t)
                {
                    nu[i][j].erase(k + 1);
                }
            }
    v[1] = 1;
    move(1);
    if(mi >= 1000000) mi = -1;
    printf("%d\n", mi);
    return 0;
}

转载于:https://my.oschina.net/locusxt/blog/136374

### 关于POJ 1742 编程问题描述与解决方案 #### 题目概述 题目编号为 **POJ 1742** 的问题是关于计算几何中的最小圆覆盖问题。该问题的核心在于给定一组平面上的点集,求能够完全覆盖这些点的最小半径圆的位置及其大小。 此问题通常采用随机增量法解决,其时间复杂度接近 \(O(n)\),是一种高效的算法实现方式[^6]。 --- #### 输入输出说明 - **输入**: 多组测试数据,每组的第一行为整数 \(N\) (\(1 \leq N \leq 100\)) 表示点的数量;随后有 \(N\) 行,每一行有两个浮点数表示平面坐标系上的点位置 \(x_i, y_i\)。 - **输出**: 对于每组测试数据,输出一个实数表示能覆盖所有点的最小圆的半径 \(R\),保留两位小数。 --- #### 解决方案思路 为了高效解决问题,可以利用随机化方法优化暴力解法的时间性能: 1. 初始化:假设第一个点作为初始圆心,并设置半径为零; 2. 迭代更新:依次加入新的点到当前已构建的圆中,若新点位于圆外,则调整圆使其包含新增加的点; 3. 调整策略:当发现某一点无法被现有圆所覆盖时,重新以这一点为基础构造一个新的圆并重复上述过程直到完成整个集合处理。 以下是基于C++语言的具体实现代码片段: ```cpp #include <bits/stdc++.h> using namespace std; struct Point { double x, y; }; double dist(const Point &a, const Point &b){ return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)); } Point getCircleCenter(double bx,double by,double cx,double cy){ double B = bx*bx+by*by,C=cx*cx+cy*cy,D=bx*cy-by*cx; return { (by*cy-cy*by)/D , ((bx+by)*(cx+cy)-(B-C)/(2*D))/(2*(bx-cx)) }; } void minCoveringCircle(int n, vector<Point> points){ random_shuffle(points.begin(),points.end()); Point c={0,0}; int r=0; for(int i=0;i<n;i++)if(dist(c,points[i])>r+.5){ c=points[i]; r=0; for(int j=0;j<i;j++)if(dist(c,points[j])>(r+=dist(c,points[j]))+.5){ c=(Point){(c.x+points[j].x)/2,(c.y+points[j].y)/2}; r=dist(c,points[j]); for(int k=0;k<j;k++)if(dist(c,points[k])>(r=dist(getCircleCenter( points[i].x-points[j].x, points[i].y-points[j].y, points[i].x-points[k].x, points[i].y-points[k].y))+dist(points[i],getCircleCenter( points[i].x-points[j].x, points[i].y-points[j].y, points[i].x-points[k].x, points[i].y-points[k].y))) ){ c=getCircleCenter(points[i].x-points[j].x,points[i].y-points[j].y,points[i].x-points[k].x,points[i].y-points[k].y); c.x += points[i].x; c.y += points[i].y; } } } printf("%.2f\n",r); } ``` --- #### 注意事项 - 数据范围较大情况下需注意精度损失问题,在必要时候可适当增加额外判断条件来减少误差影响。 - 使用 `random_shuffle` 函数前应引入 `<algorithm>` 库支持,并确保编译器版本兼容 C++11 或更高标准。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值