Python: 矩阵与线性代数运算

本文介绍如何使用NumPy进行矩阵和线性代数运算,包括矩阵乘法、求逆、转置、求行列式、求解线性方程组等,并通过实例演示了矩阵的基本操作和线性代数函数的使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

需要执行矩阵和线性代数运算,比如矩阵乘法、寻找行列式、求解线性方程组等等。

矩阵类似于3.9 小节中数组对象,但是遵循线性代数的计算规则。下面的一个例子展示了矩阵的一些基本特性:

>>> import numpy as np
>>> m = np.matrix([[1,-2,3],[0,4,5],[7,8,-9]])
>>> m
matrix([[ 1, -2, 3],
[ 0, 4, 5],
[ 7, 8, -9]])
>>> # Return transpose
>>> m.T
matrix([[ 1, 0, 7],
[-2, 4, 8],
[ 3, 5, -9]])
>>> # Return inverse
>>> m.I
matrix([[ 0.33043478, -0.02608696, 0.09565217],
[-0.15217391, 0.13043478, 0.02173913],
[ 0.12173913, 0.09565217, -0.0173913 ]])
>>> # Create a vector and multiply
>>> v = np.matrix([[2],[3],[4]])
>>> v
matrix([[2],
[3],
[4]])
>>> m * v
matrix([[ 8],
[32],
[ 2]])
>>>

 可以在numpy中找到更多的操作函数

>>> import numpy.linalg
>>> # Determinant
>>> numpy.linalg.det(m)
-229.99999999999983
>>> # Eigenvalues
>>> numpy.linalg.eigvals(m)
array([-13.11474312, 2.75956154, 6.35518158])
>>> # Solve for x in mx = v
>>> x = numpy.linalg.solve(m, v)
>>> x
matrix([[ 0.96521739],
[ 0.17391304],
[ 0.46086957]])
>>> m * x
matrix([[ 2.],
[ 3.],
[ 4.]])
>>> v
matrix([[2],
[3],
[4]])

 很显然线性代数是个非常大的主题,已经超出了本书能讨论的范围。但是,如果需要操作数组和向量的话, NumPy 是一个不错的入口点。可以访问NumPy 官网http://www.numpy.org 获取更多信息。

 

转载于:https://www.cnblogs.com/baxianhua/p/9924117.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值