[Javascript] Intro to Recursion

本文探讨了递归技术在解决特定任务时的优势,并通过数组扁平化的例子展示了递归与非递归方法的对比。首先指出非递归方法的局限性,进而深入解释递归为何成为解决问题的理想选择,以及在某些情况下它是唯一可行的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Recursion is a technique well suited to certain types of tasks. In this first lesson we’ll look at solving a problem that requires the flattening of arrays without using recursion. Showing the shortcoming of a non-recursive solution first will help you to understand why it’s so valuable and why sometimes it's the only solution to many problem.

 

let input, config, tasks;

input = ['dist'];

config = {
  "dist": ["build", "deploy"],
  "build": ['js', 'css', 'vender'],
  "js": ['babel', 'ng-Annotate', "uglify"],
  "css": ["sass", "css-min"]
};

tasks = [];

getTasks(input);

function getTasks(input){
  
  input.forEach((task)=>{
    if(config[task]){
      getTasks(config[task]);
    }else{
      tasks.push(task);
    }
  })
};

console.log(tasks);

 

["babel", "ng-Annotate", "uglify", "sass", "css-min", "vender", "deploy"]

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值