浅谈 Active Learning

本文探讨了主动学习中不确定性与多样性的选择标准如何有效地改进增量多标签学习的分类模型。传统的监督学习通常假设每个实例只对应单一标签,而多标签学习则允许每个实例拥有多个标签。文中介绍了三种关键的选择标准:不确定性衡量模型对于分类实例的信心;多样性衡量实例与已标记数据之间的差异;密度则反映实例在整个数据集中的代表性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. Active Query Driven by Uncertainty and Diversity for Incremental Multi-Label Learning

 

The key task in active learning is to design a selection criterion such that queried labels can improve the classification model most.

many active selection criteria: 

uncertainty measures the confidence of the current model on classifying an instance ,

diversity measures how different an instance is from the labeled data ,

density measures the representativeness of an instance to the whole data set .

 

In traditional supervised classification problems, one instance is assumed to be associated with only one label. However, in many real world applications, an object can have multiple labels simultaneously. Multi-label learning is a framework dealing with such objects.

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值