# 过滤式特征选择法的原理
使用发散性或相关性指标对各个特征进行评分,选择分数大于阈值的特征或者选择前K个分数最大的特征。具体来说,计算每个特征的发散性,移除发散性小于阈值的特征/选择前k个分数最大的特征;计算每个特征与标签的相关性,移除相关性小于阈值的特征/选择前k个分数最大的特征。
# 过滤式特征选择法的特点
特征选择过程与学习器无关,相当于先对初始特征进行过滤,再用过滤后的特征训练学习器。过滤式特征选择法简单、易于运行、易于理解,通常对于理解数据有较好的效果,但对特征优化、提高模型泛化能力来说效果一般。
# 常用的过滤式特征选择法
- 方差选择法(发散性)
使用方差作为特征评分标准,如果某个特征的取值差异不大,通常认为该特征对区分样本的贡献度不大,因此在构造特征过程中去掉方差小于阈值的特征。注意:方差选择法适用于离散型特征,连续型特征需要须离散化后使用;方差较小的特征很少,方差选择法简单但不好用,一般作为特征选择的预处理步骤,先去掉方差较小的特征,然后使用其他特征选择方法选择特征。