【特征选择】过滤式特征选择法

本文介绍了过滤式特征选择法的原理,通过发散性或相关性指标评估特征,常用的有方差选择法、卡方检验法、皮尔森相关系数法和互信息系数法。这种方法简单快速,但可能对模型泛化能力提升有限。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# 过滤式特征选择法的原理

          使用发散性或相关性指标对各个特征进行评分,选择分数大于阈值的特征或者选择前K个分数最大的特征。具体来说,计算每个特征的发散性,移除发散性小于阈值的特征/选择前k个分数最大的特征;计算每个特征与标签的相关性,移除相关性小于阈值的特征/选择前k个分数最大的特征。

# 过滤式特征选择法的特点

          特征选择过程与学习器无关,相当于先对初始特征进行过滤,再用过滤后的特征训练学习器。过滤式特征选择法简单、易于运行、易于理解,通常对于理解数据有较好的效果,但对特征优化、提高模型泛化能力来说效果一般。

# 常用的过滤式特征选择法

  • 方差选择法(发散性)

             使用方差作为特征评分标准,如果某个特征的取值差异不大,通常认为该特征对区分样本的贡献度不大,因此在构造特征过程中去掉方差小于阈值的特征。注意:方差选择法适用于离散型特征,连续型特征需要须离散化后使用;方差较小的特征很少,方差选择法简单但不好用,一般作为特征选择的预处理步骤,先去掉方差较小的特征,然后使用其他特征选择方法选择特征。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值