[再寄小读者之数学篇](2014-07-16 凹函数与次线性性)

本文通过构造函数$F(x)$,利用已知条件$f''(x)<0$,证明了当$0<a<b<a+b<c$时,不等式$f(a+b)<f(a)+f(b)$成立。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

设 $f$ 在 $[0,c]$ 上连续, $f(0)=0$, 且当 $x\in (0,c)$ 时, $f''(x)<0$. 试证: 当 $0<a<b<a+b<c$ 时, $$\bex f(a+b)<f(a)+f(b). \eex$$

 

证明: 对固定的 $b>0$, 令 $$\bex F(x)=f(x+b)-f(x)-f(b), \eex$$ 则 $F(0)=0$; 且由 $f''(x)<0$ 知 $$\bex F'(x)=f'(x+b)-f'(x)<0. \eex$$ 于是 $$\bex F(a)<F(0)=0. \eex$$

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值