去掉input text后面的叉

本文介绍了一种清除HTML输入框(input)控件默认样式的方法,通过CSS代码隐藏了input[type=text]的清除按钮和搜索取消按钮,并设置了边框、背景、内边距等样式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如题

input[type=text]::-ms-clear{
				display: none;
				
			}
			input::-webkit-search-cancel-button{
				display: none;
			}  
			input.t {
				border:1px solid #fff;
				background:#fff; 			
	 			padding-left:5px; 
	 			height:30px; 
	 			line-height:30px ;
	 			font-size:12px;
	 			font-color: #004779;
	 			
	 		} 

下面的样式是input控件里面的样式, 调用的只需  class="t"

转载于:https://www.cnblogs.com/wujixing/p/5856770.html

Ecrade has an integer $x$. He will show you this number in the form of a binary number of length $n$. There are two kinds of operations. 1. Replace $x$ with $\left\lfloor \dfrac{x}{2}\right\rfloor$, where $\left\lfloor \dfrac{x}{2}\right\rfloor$ is the greatest integer $\le \dfrac{x}{2}$. 2. Replace $x$ with $\left\lceil \dfrac{x}{2}\right\rceil$, where $\left\lceil \dfrac{x}{2}\right\rceil$ is the smallest integer $\ge \dfrac{x}{2}$. Ecrade will perform several operations until $x$ becomes $1$. Each time, he will independently choose to perform either the first operation or the second operation with probability $\frac{1}{2}$. Ecrade wants to know the expected number of operations he will perform to make $x$ equal to $1$, modulo $10^9 + 7$. However, it seems a little difficult, so please help him! **Input** The first line contains a single integer $t$ ($1 \le t \le 10^5$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $n$ ($1 \le n \le 10^5$) — the length of $x$ in binary representation. The second line of each test case contains a binary string of length $n$: the number $x$ in the binary representation, presented from the most significant bit to the least significant bit. It is guaranteed that the most significant bit of $x$ is $1$. It is guaranteed that the sum of $n$ across all test cases does not exceed $10^5$. Example InputCopy 3 3 110 3 100 10 1101001011 OutputCopy 500000006 2 193359386    **Note** For simplicity, we call the first operation $\text{OPER 1}$ and the second operation $\text{OPER 2}$. In the first test case, $x=6$, and there are six possible series of operations: - $6 \xrightarrow{\text{OPER 1}} 3 \xrightarrow{\text{OPER 1}} 1$, the probability is $\dfrac{1}{4}$. - $6 \xrightarrow{\text{OPER 1}} 3 \xrightarrow{\text{OPER 2}} 2 \xrightarrow{\text{OPER 1}} 1$, the probability is $\dfrac{1}{8}$. - $6 \xrightarrow{\text{OPER 1}} 3 \xrightarrow{\text{OPER 2}} 2 \xrightarrow{\text{OPER 2}} 1$, the probability is $\dfrac{1}{8}$. - $6 \xrightarrow{\text{OPER 2}} 3 \xrightarrow{\text{OPER 1}} 1$, the probability is $\dfrac{1}{4}$. - $6 \xrightarrow{\text{OPER 2}} 3 \xrightarrow{\text{OPER 2}} 2 \xrightarrow{\text{OPER 1}} 1$, the probability is $\dfrac{1}{8}$. - $6 \xrightarrow{\text{OPER 2}} 3 \xrightarrow{\text{OPER 2}} 2 \xrightarrow{\text{OPER 2}} 1$, the probability is $\dfrac{1}{8}$. Thus, the expected number of operations is $2 \cdot \dfrac{1}{4} + 3 \cdot \dfrac{1}{8} + 3 \cdot \dfrac{1}{8} + 2 \cdot \dfrac{1}{4} + 3 \cdot \dfrac{1}{8} + 3 \cdot \dfrac{1}{8} = \dfrac{5}{2} \equiv 500\,000\,006 \pmod{10^9 + 7}$. 期望dp如何求解
最新发布
03-19
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值