雅虎开源了TensorFlowOnSpark

雅虎开源了TensorFlowOnSpark,使数据科学家能在CPU/GPU架构上使用Spark或Hadoop进行分布式模型训练。该库支持现有TensorFlow程序转换为新API,实现性能提升。此外,雅虎还扩展了TensorFlow核心C++引擎以支持Infiniband中的RDMA,进一步提高训练速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

雅虎开源了TensorFlowOnSpark,数据科学家和工程师们可以直接利用运行于CPU/GPU架构上的Spark或者Hadoop做分布式模型训练。据报道,这个库支持把现有的TensorFlow程序切换到新的API,同时实现了模型训练的性能提升。

在开源公告里,雅虎说明了TensorFlowOnSpark想解决的问题,比如在深度神经网络训练中管理Spark数据管线之外的其他集群带来的运维负载,以网络I/O为瓶颈的数据集在训练集群的传入和传出,令人讨厌的系统复杂性,以及端到端的整体学习时延。TensorFlowOnSpark的工作和雅虎之前开源的CaffeOnSpark相似。现有的对TensorFlow和Spark的集成所做的努力,有DataBricks的TensorFrame,以及Amp Lab 的SparkNet,这些对于雅虎来说都是在正确方向上的迈进,但是在允许TensorFlow进程之间直接通信方面还是有所欠缺。雅虎的目标之一,是让TensorFlowOnSpark成为一个完全对Spark兼容的API,在一个Spark处理工作流里,其集成能力能跟SparkSQL、MLib以及其他Spark核心库一样好。

在架构上,它把给定TensorFlow算法和TensorFlow core放在一个Spark Executor中,并让TensorFlow任务能够通过TensorFlow的文件阅读器和QueueRunners直接获取HDFS数据,这是一种有着更少网络I/O以及“把计算带给数据”的方案。TensorFlowOnSpark在语义上就支持对执行器的端口预留和监听,对数据和控制函数的消息轮询,TensorFlow主函数的启动,数据注入,直接从HDFS读取数据的阅读器和queue-runner机制,通过feed_dict向TensorFlow注入Spark RDD,以及关机。

除了TensorFlowOnSpark,雅虎还在他们自己的分支上扩展了TensorFlow核心C++引擎以在Infiniband里使用RDMA,这个需求在TensorFlow主项目里被提出过还产生了相关讨论。雅虎的Andy Feng注意到,使用RDMA而不是gRPC来做进程间通信,在不同的网络里会带来百分之十到百分之两百不等的训练速度的提升。

本文转自d1net(转载)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值