从
runtime
源码,理解+(void)load
和+(void)initialize
方法。
零、官方文档
-
initialize Initializes the class before it receives its first message.
-
load Invoked whenever a class or category is added to the Objective-C runtime; implement this method to perform class-specific behavior upon loading.
根据文档,+load
方法只要文件被引用就会被调用,所以如果类没有被引进项目,就不会调用 +load
。+initialize
方法是在类或者子类的第一个方法(抛一个问题,那 runtime 调用 +load
方法呢,算第一个方法吗?)被调用之前调用,即使类被引用进项目,但没有被使用, +initialize
也不会被调用。两者都只会被调用一次。
一、实验田
# Father.h 和 Father.m
@interface Father : NSObject
@end
#import "Father.h"
#pragma mark - Father
@implementation Father
+ (void)load {
# [self class];
NSLog(@"%s", __FUNCTION__);
}
+ (void)initialize {
NSLog(@"%s", __FUNCTION__);
}
@end
复制代码
# Son .h 和 .m
@interface Son : Father
@end
@implementation Son
+ (void)load {
# [self class];
NSLog(@"%s", __FUNCTION__);
}
+ (void)initialize {
NSLog(@"%s", __FUNCTION__);
}
@end
复制代码
# Category Active of Son .h and .m
@interface Son (Active)
@end
@implementation Son (Active)
+ (void)load {
# [self class];
NSLog(@"%s", __FUNCTION__);
}
+ (void)initialize {
NSLog(@"%s", __FUNCTION__);
}
@end
复制代码
# Category Stiff of Son .h and .m
@interface Son (Stiff)
@end
@implementation Son (Stiff)
+ (void)load {
# [self class];
NSLog(@"%s", __FUNCTION__);
}
+ (void)initialize {
NSLog(@"%s", __FUNCTION__);
}
@end
复制代码
结果如下
# 父类的方法优先于子类的方法,类中的方法优先于类别中的方法。
2018-02-01 10:59:11.957088+0800 LoadAndInitializePlot[21886:9588221] +[Father load]
2018-02-01 10:59:11.957867+0800 LoadAndInitializePlot[21886:9588221] +[Son load]
2018-02-01 10:59:11.957997+0800 LoadAndInitializePlot[21886:9588221] +[Son(Active) load]
2018-02-01 10:59:11.958132+0800 LoadAndInitializePlot[21886:9588221] +[Son(Stiff) load]
复制代码
在 Father load 中添加 [self class];
,结果如下
# 调用了 Father 中的方法,第一个方法`[self class];`被调用时,在调用方法之前执行 `+initialize` 方法。可以看出,虽然引用了 Son 类,但没有调用 Son 的 `+initalize`,同时 runtime 对 `+(void)load` 的调用不视为调用类的第一个方法,如果是子类 Son 也会调用 `+initialize` 的。
2018-02-01 11:03:38.424049+0800 LoadAndInitializePlot[21961:9595895] +[Father initialize]
2018-02-01 11:03:38.424803+0800 LoadAndInitializePlot[21961:9595895] +[Father load]
2018-02-01 11:03:38.424953+0800 LoadAndInitializePlot[21961:9595895] +[Son load]
2018-02-01 11:03:38.425123+0800 LoadAndInitializePlot[21961:9595895] +[Son(Active) load]
2018-02-01 11:03:38.425418+0800 LoadAndInitializePlot[21961:9595895] +[Son(Stiff) load]
复制代码
在 Son load 中添加 [self class];
,结果如下两种(在Build Phases -> Compile Sources 中拖动类别的上下顺序,也就是编译的先后顺序)。根据 runtime 对 category 加载过程,一个类的所有类别的方法被取出放在 method_list_t 中,另外,这里的新生成的 category 的方法会先于 早期生成的 category 的方法,倒序添加的。生成所有 method 的 list 之后,将所有的方法 前序 添加到类的方法数组中。原来的类的方法被 category 的方法覆盖,但被覆盖的方法依旧还在里面。这是因为系统调用方法,根据方法名在 method_list 中查找方法,找到第一个名字匹配的方法之后就不继续往下找了。每次调用都是 method_list 中最前面的同名方法,其他的方法仍在 method_list 中。
# Son (Stiff) 类别在 Son (Active) 后编译
2018-02-01 11:46:45.558933+0800 LoadAndInitializePlot[22604:9665625] +[Father load]
2018-02-01 11:46:45.559605+0800 LoadAndInitializePlot[22604:9665625] +[Father initialize]
2018-02-01 11:46:45.559735+0800 LoadAndInitializePlot[22604:9665625] +[Son(Stiff) initialize]
2018-02-01 11:46:45.559876+0800 LoadAndInitializePlot[22604:9665625] +[Son load]
2018-02-01 11:46:45.560021+0800 LoadAndInitializePlot[22604:9665625] +[Son(Active) load]
2018-02-01 11:46:45.560125+0800 LoadAndInitializePlot[22604:9665625] +[Son(Stiff) load]
复制代码
# Son (Active) 类别在 Son (Stiff) 后编译
2018-02-01 11:50:33.255480+0800 LoadAndInitializePlot[22659:9671829] +[Father load]
2018-02-01 11:50:33.256105+0800 LoadAndInitializePlot[22659:9671829] +[Father initialize]
2018-02-01 11:50:33.256236+0800 LoadAndInitializePlot[22659:9671829] +[Son(Active) initialize]
2018-02-01 11:50:33.256363+0800 LoadAndInitializePlot[22659:9671829] +[Son load]
2018-02-01 11:50:33.256449+0800 LoadAndInitializePlot[22659:9671829] +[Son(Stiff) load]
2018-02-01 11:50:33.256531+0800 LoadAndInitializePlot[22659:9671829] +[Son(Active) load]
复制代码
在 Son load 中添加 [self class];
,移除 Son 主类和两个类别中的 +initilize 方法。
# `+(void)initialize` 自身未定义,会沿用父类的方法。
2018-02-01 11:54:27.282176+0800 LoadAndInitializePlot[22722:9678734] +[Father load]
2018-02-01 11:54:27.282749+0800 LoadAndInitializePlot[22722:9678734] +[Father initialize]
2018-02-01 11:54:27.282843+0800 LoadAndInitializePlot[22722:9678734] +[Father initialize]
2018-02-01 11:54:27.282955+0800 LoadAndInitializePlot[22722:9678734] +[Son load]
2018-02-01 11:54:27.283046+0800 LoadAndInitializePlot[22722:9678734] +[Son(Stiff) load]
2018-02-01 11:54:27.283157+0800 LoadAndInitializePlot[22722:9678734] +[Son(Active) load]
复制代码
在 Son load 中添加 [self class];
,移除 两个类别的 +initilize 方法。
# 根据以上的 runtime 中的分析可知,`+(void)initialize`会“覆盖”类中的方法,只执行一个。
2018-02-01 11:56:00.047404+0800 LoadAndInitializePlot[22756:9681679] +[Father load]
2018-02-01 11:56:00.051067+0800 LoadAndInitializePlot[22756:9681679] +[Father initialize]
2018-02-01 11:56:00.051389+0800 LoadAndInitializePlot[22756:9681679] +[Son initialize]
2018-02-01 11:56:00.051745+0800 LoadAndInitializePlot[22756:9681679] +[Son load]
2018-02-01 11:56:00.052070+0800 LoadAndInitializePlot[22756:9681679] +[Son(Stiff) load]
2018-02-01 11:56:00.052350+0800 LoadAndInitializePlot[22756:9681679] +[Son(Active) load]
复制代码
一、+(void)load
的理解
+load 方法是 Objective-C 中 NSObject 的一个方法,在整个文件刚被加载到运行时,在 main 函数调用之前被 ObjC runtime 调用的钩子方法。
常见理论知识汇总
- 调用顺序:父类 > 子类 > 分类
- 调用时机:Objective-C 运行时初始化时,每当有新的镜像
library
map 到运行时调用。 - 调用次数:一次
- 线程安全:load 方法是线程安全的,内部使用了锁,应避免线程阻塞在 load 中。
- 常见场景:load 中实现 Method Swizzle。
- one more thing:如果一个类本身没有 load 方法,不管其父类是否实现 load,都不会调用,主类和分类都执行。
基于 runtime 源码分析
针对 runtime 源码 objc4-723 ,做一下探讨。 xnu 内核为程序准备好之后,将控制权交个 dyld 负责后续工作,dyld 是 Apple 的动态链接器, the dynamic link editor 的缩写。此过程内核态切换到用户态,dyld 在用户态。
####_objc_init 每当 libSystem 在 library 初始化之前都会调用 _objc_init
方法,dyld 在方法中注册 load_images 回调。
/***********************************************************************
* _objc_init
* Bootstrap initialization. Registers our image notifier with dyld.
* Called by libSystem BEFORE library initialization time
**********************************************************************/
# pragma mark - ObjC runtime 初始化 注册 load_images 回调
void _objc_init(void)
{
static bool initialized = false;
if (initialized) return;
initialized = true;
// fixme defer initialization until an objc-using image is found?
environ_init();
tls_init();
static_init();
lock_init();
exception_init();
_dyld_objc_notify_register(&map_2_images, load_images, unmap_image);
}
复制代码
load_images
所以每当有新的 library 被 map 到 runtime 时,调用 load_images 方法。
/***********************************************************************
* load_images
* Process +load in the given images which are being mapped in by dyld.
*
* Locking: write-locks runtimeLock and loadMethodLock
**********************************************************************/
extern bool hasLoadMethods(const headerType *mhdr);
extern void prepare_load_methods(const headerType *mhdr);
void
load_images(const char *path __unused, const struct mach_header *mh)
{
// Return without taking locks if there are no +load methods here.
if (!hasLoadMethods((const headerType *)mh)) return;
recursive_mutex_locker_t lock(loadMethodLock);
// Discover load methods
{
rwlock_writer_t lock2(runtimeLock);
prepare_load_methods((const headerType *)mh);
}
// Call +load methods (without runtimeLock - re-entrant)
call_load_methods();
}
复制代码
prepare_load_methods
在主类的父类和自身添加到全局静态结构体 loadable_list 中之后,添加主类的分类,将分类添加到全局静态结构体 loadable_categories 中。所以子类优先分类。
void prepare_load_methods(const headerType *mhdr)
{
size_t count, i;
runtimeLock.assertWriting();
classref_t *classlist =
_getObjc2NonlazyClassList(mhdr, &count);
for (i = 0; i < count; i++) {
schedule_class_load(remapClass(classlist[i]));
}
category_t **categorylist = _getObjc2NonlazyCategoryList(mhdr, &count);
for (i = 0; i < count; i++) {
category_t *cat = categorylist[i];
Class cls = remapClass(cat->cls);
if (!cls) continue; // category for ignored weak-linked class
realizeClass(cls);
assert(cls->ISA()->isRealized());
add_category_to_loadable_list(cat);
}
}
复制代码
schedule_class_load
递归调用 schedule_class_load ,在将当前类加入全局静态结构体 loadable_classes 之前,将父类加入其中,待后续加载。保证了父类在子类之前调用 load 方法。
/***********************************************************************
* prepare_load_methods
* Schedule +load for classes in this image, any un-+load-ed
* superclasses in other images, and any categories in this image.
**********************************************************************/
// Recursively schedule +load for cls and any un-+load-ed superclasses.
// cls must already be connected.
static void schedule_class_load(Class cls)
{
if (!cls) return;
assert(cls->isRealized()); // _read_images should realize
if (cls->data()->flags & RW_LOADED) return;
// Ensure superclass-first ordering
schedule_class_load(cls->superclass);
add_class_to_loadable_list(cls);
cls->setInfo(RW_LOADED);
}
复制代码
call_load_methods
当 library 加载到运行时,prepare 调用结束,执行 call_load_methods();
/***********************************************************************
* call_load_methods
* Call all pending class and category +load methods.
* Class +load methods are called superclass-first.
* Category +load methods are not called until after the parent class's +load.
*
* This method must be RE-ENTRANT, because a +load could trigger
* more image mapping. In addition, the superclass-first ordering
* must be preserved in the face of re-entrant calls. Therefore,
* only the OUTERMOST call of this function will do anything, and
* that call will handle all loadable classes, even those generated
* while it was running.
*
* The sequence below preserves +load ordering in the face of
* image loading during a +load, and make sure that no
* +load method is forgotten because it was added during
* a +load call.
* Sequence:
* 1. Repeatedly call class +loads until there aren't any more
* 2. Call category +loads ONCE.
* 3. Run more +loads if:
* (a) there are more classes to load, OR
* (b) there are some potential category +loads that have
* still never been attempted.
* Category +loads are only run once to ensure "parent class first"
* ordering, even if a category +load triggers a new loadable class
* and a new loadable category attached to that class.
*
* Locking: loadMethodLock must be held by the caller
* All other locks must not be held.
**********************************************************************/
void call_load_methods(void)
{
static bool loading = NO;
bool more_categories;
loadMethodLock.assertLocked();
// Re-entrant calls do nothing; the outermost call will finish the job.
if (loading) return;
loading = YES;
void *pool = objc_autoreleasePoolPush();
do {
// 1. Repeatedly call class +loads until there aren't any more
while (loadable_classes_used > 0) {
call_class_loads();
}
// 2. Call category +loads ONCE
more_categories = call_category_loads();
// 3. Run more +loads if there are classes OR more untried categories
} while (loadable_classes_used > 0 || more_categories);
objc_autoreleasePoolPop(pool);
loading = NO;
}
复制代码
附录:
add_class_to_loadable_list
和 add_category_to_loadable_list
方法
// List of classes that need +load called (pending superclass +load)
// This list always has superclasses first because of the way it is constructed
static struct loadable_class *loadable_classes = nil;
static int loadable_classes_used = 0;
static int loadable_classes_allocated = 0;
// List of categories that need +load called (pending parent class +load)
static struct loadable_category *loadable_categories = nil;
static int loadable_categories_used = 0;
static int loadable_categories_allocated = 0;
/***********************************************************************
* add_class_to_loadable_list
* Class cls has just become connected. Schedule it for +load if
* it implements a +load method.
**********************************************************************/
void add_class_to_loadable_list(Class cls)
{
IMP method;
loadMethodLock.assertLocked();
method = cls->getLoadMethod();
if (!method) return; // Don't bother if cls has no +load method
if (PrintLoading) {
_objc_inform("LOAD: class '%s' scheduled for +load",
cls->nameForLogging());
}
if (loadable_classes_used == loadable_classes_allocated) {
loadable_classes_allocated = loadable_classes_allocated*2 + 16;
loadable_classes = (struct loadable_class *)
realloc(loadable_classes,
loadable_classes_allocated *
sizeof(struct loadable_class));
}
loadable_classes[loadable_classes_used].cls = cls;
loadable_classes[loadable_classes_used].method = method;
loadable_classes_used++;
}
/***********************************************************************
* add_category_to_loadable_list
* Category cat's parent class exists and the category has been attached
* to its class. Schedule this category for +load after its parent class
* becomes connected and has its own +load method called.
**********************************************************************/
void add_category_to_loadable_list(Category cat)
{
IMP method;
loadMethodLock.assertLocked();
method = _category_getLoadMethod(cat);
// Don't bother if cat has no +load method
if (!method) return;
if (PrintLoading) {
_objc_inform("LOAD: category '%s(%s)' scheduled for +load",
_category_getClassName(cat), _category_getName(cat));
}
if (loadable_categories_used == loadable_categories_allocated) {
loadable_categories_allocated = loadable_categories_allocated*2 + 16;
loadable_categories = (struct loadable_category *)
realloc(loadable_categories,
loadable_categories_allocated *
sizeof(struct loadable_category));
}
loadable_categories[loadable_categories_used].cat = cat;
loadable_categories[loadable_categories_used].method = method;
loadable_categories_used++;
}
复制代码
call_class_loads
和 call_category_loads
方法
/***********************************************************************
* call_class_loads
* Call all pending class +load methods.
* If new classes become loadable, +load is NOT called for them.
*
* Called only by call_load_methods().
**********************************************************************/
static void call_class_loads(void)
{
int i;
// Detach current loadable list.
struct loadable_class *classes = loadable_classes;
int used = loadable_classes_used;
loadable_classes = nil;
loadable_classes_allocated = 0;
loadable_classes_used = 0;
// Call all +loads for the detached list.
for (i = 0; i < used; i++) {
Class cls = classes[i].cls;
load_method_t load_method = (load_method_t)classes[i].method;
if (!cls) continue;
if (PrintLoading) {
_objc_inform("LOAD: +[%s load]\n", cls->nameForLogging());
}
(*load_method)(cls, SEL_load);
}
// Destroy the detached list.
if (classes) free(classes);
}
/***********************************************************************
* call_category_loads
* Call some pending category +load methods.
* The parent class of the +load-implementing categories has all of
* its categories attached, in case some are lazily waiting for +initalize.
* Don't call +load unless the parent class is connected.
* If new categories become loadable, +load is NOT called, and they
* are added to the end of the loadable list, and we return TRUE.
* Return FALSE if no new categories became loadable.
*
* Called only by call_load_methods().
**********************************************************************/
static bool call_category_loads(void)
{
int i, shift;
bool new_categories_added = NO;
// Detach current loadable list.
struct loadable_category *cats = loadable_categories;
int used = loadable_categories_used;
int allocated = loadable_categories_allocated;
loadable_categories = nil;
loadable_categories_allocated = 0;
loadable_categories_used = 0;
// Call all +loads for the detached list.
for (i = 0; i < used; i++) {
Category cat = cats[i].cat;
load_method_t load_method = (load_method_t)cats[i].method;
Class cls;
if (!cat) continue;
cls = _category_getClass(cat);
if (cls && cls->isLoadable()) {
if (PrintLoading) {
_objc_inform("LOAD: +[%s(%s) load]\n",
cls->nameForLogging(),
_category_getName(cat));
}
(*load_method)(cls, SEL_load);
cats[i].cat = nil;
}
}
// Compact detached list (order-preserving)
shift = 0;
for (i = 0; i < used; i++) {
if (cats[i].cat) {
cats[i-shift] = cats[i];
} else {
shift++;
}
}
used -= shift;
// Copy any new +load candidates from the new list to the detached list.
new_categories_added = (loadable_categories_used > 0);
for (i = 0; i < loadable_categories_used; i++) {
if (used == allocated) {
allocated = allocated*2 + 16;
cats = (struct loadable_category *)
realloc(cats, allocated *
sizeof(struct loadable_category));
}
cats[used++] = loadable_categories[i];
}
// Destroy the new list.
if (loadable_categories) free(loadable_categories);
// Reattach the (now augmented) detached list.
// But if there's nothing left to load, destroy the list.
if (used) {
loadable_categories = cats;
loadable_categories_used = used;
loadable_categories_allocated = allocated;
} else {
if (cats) free(cats);
loadable_categories = nil;
loadable_categories_used = 0;
loadable_categories_allocated = 0;
}
if (PrintLoading) {
if (loadable_categories_used != 0) {
_objc_inform("LOAD: %d categories still waiting for +load\n",
loadable_categories_used);
}
}
return new_categories_added;
}
复制代码
+(void)initialize
的理解
+(void)initialize
是在类或者它的子类收到第一条消息(实例方法、类方法)之前被调用的。
常见理论知识汇总
- 调用顺序:父类 > 子类(或分类)
- 调用时机:Objective-C 运行时初始化时,每当有新的镜像
library
map 到运行时调用。 - 调用次数:多次,如果子类未实现
+(void)initialize
,父类+(void)initialize
会被调用多次 - 线程安全:在initialize方法收到调用时,运行环境基本健全。initialize的运行过程中是能保证线程安全的。
- 常见场景:稍微广泛,初始化工作,或者单例模式的实现方案。
基于 runtime 源码分析
lookUpImpOrForward
当一个类收到消息时,runtime 会通过 IMP lookUpImpOrForward(Class cls, SEL sel, id inst, bool initialize, bool cache, bool resolver)
方法查找方法的实现返回函数指针 IMP,或者进行消息转发。
/***********************************************************************
* lookUpImpOrForward.
* The standard IMP lookup.
* initialize==NO tries to avoid +initialize (but sometimes fails)
* cache==NO skips optimistic unlocked lookup (but uses cache elsewhere)
* Most callers should use initialize==YES and cache==YES.
* inst is an instance of cls or a subclass thereof, or nil if none is known.
* If cls is an un-initialized metaclass then a non-nil inst is faster.
* May return _objc_msgForward_impcache. IMPs destined for external use
* must be converted to _objc_msgForward or _objc_msgForward_stret.
* If you don't want forwarding at all, use lookUpImpOrNil() instead.
**********************************************************************/
IMP lookUpImpOrForward(Class cls, SEL sel, id inst,
bool initialize, bool cache, bool resolver)
{
...
if (initialize && !cls->isInitialized()) {
_class_initialize (_class_getNonMetaClass(cls, inst));
// If sel == initialize, _class_initialize will send +initialize and
// then the messenger will send +initialize again after this
// procedure finishes. Of course, if this is not being called
// from the messenger then it won't happen. 2778172
}
...
}
复制代码
_class_initialize
如果类没有被初始化,会调用 _class_initialize
进行初始化,对入参的参数父类递归的调用 _class_initialize
,这也就是父类优先子类调用的本质。是不是对「Talk is cheap. Show me the code.」深表体会;)
/***********************************************************************
* class_initialize. Send the '+initialize' message on demand to any
* uninitialized class. Force initialization of superclasses first.
**********************************************************************/
void _class_initialize(Class cls)
{
assert(!cls->isMetaClass());
Class supercls;
bool reallyInitialize = NO;
// Make sure super is done initializing BEFORE beginning to initialize cls.
// See note about deadlock above.
supercls = cls->superclass;
if (supercls && !supercls->isInitialized()) {
_class_initialize(supercls);
}
// Try to atomically set CLS_INITIALIZING.
{
monitor_locker_t lock(classInitLock);
if (!cls->isInitialized() && !cls->isInitializing()) {
cls->setInitializing();
reallyInitialize = YES;
}
}
if (reallyInitialize) {
// We successfully set the CLS_INITIALIZING bit. Initialize the class.
// Record that we're initializing this class so we can message it.
_setThisThreadIsInitializingClass(cls);
// Send the +initialize message.
// Note that +initialize is sent to the superclass (again) if
// this class doesn't implement +initialize. 2157218
if (PrintInitializing) {
_objc_inform("INITIALIZE: calling +[%s initialize]",
cls->nameForLogging());
}
// Exceptions: A +initialize call that throws an exception
// is deemed to be a complete and successful +initialize.
@try {
callInitialize(cls);
if (PrintInitializing) {
_objc_inform("INITIALIZE: finished +[%s initialize]",
cls->nameForLogging());
}
}
@catch (...) {
if (PrintInitializing) {
_objc_inform("INITIALIZE: +[%s initialize] threw an exception",
cls->nameForLogging());
}
@throw;
}
@finally {
// Done initializing.
// If the superclass is also done initializing, then update
// the info bits and notify waiting threads.
// If not, update them later. (This can happen if this +initialize
// was itself triggered from inside a superclass +initialize.)
monitor_locker_t lock(classInitLock);
if (!supercls || supercls->isInitialized()) {
_finishInitializing(cls, supercls);
} else {
_finishInitializingAfter(cls, supercls);
}
}
return;
}
else if (cls->isInitializing()) {
// We couldn't set INITIALIZING because INITIALIZING was already set.
// If this thread set it earlier, continue normally.
// If some other thread set it, block until initialize is done.
// It's ok if INITIALIZING changes to INITIALIZED while we're here,
// because we safely check for INITIALIZED inside the lock
// before blocking.
if (_thisThreadIsInitializingClass(cls)) {
return;
} else {
waitForInitializeToComplete(cls);
return;
}
}
else if (cls->isInitialized()) {
// Set CLS_INITIALIZING failed because someone else already
// initialized the class. Continue normally.
// NOTE this check must come AFTER the ISINITIALIZING case.
// Otherwise: Another thread is initializing this class. ISINITIALIZED
// is false. Skip this clause. Then the other thread finishes
// initialization and sets INITIALIZING=no and INITIALIZED=yes.
// Skip the ISINITIALIZING clause. Die horribly.
return;
}
else {
// We shouldn't be here.
_objc_fatal("thread-safe class init in objc runtime is buggy!");
}
}
复制代码
callInitialize 中使用 objc_msgSend 方式对 +(void)initialize 进行调用,也就是和普通方法走消息发送的流程,如果子类没有实现,走父类的方法,如果分类实现,就会对主类进行“覆盖”,如果多个分类,不确定调用哪一个分类的同名方法,需要看编译的过程。
void callInitialize(Class cls)
{
((void(*)(Class, SEL))objc_msgSend)(cls, SEL_initialize);
asm("");
}
复制代码
Tips
如果子类没有实现 +(void)initialize
,父类会被调用多次,只想调用父类 initialize 一次呢。
+ (void)initialize {
if (self == [ClassName self]) {
}
}
# 或者 dispatch_once 了
复制代码