hadoop 2.6.x line 和2.7.x line 区别

本文详细介绍了Hadoop2.6和2.7版本的主要特性,涵盖了Hadoop Common、HDFS、YARN及MapReduce等组件的新功能与改进,如Hadoop KMS密钥管理、异构存储支持、YARN长时间运行服务支持等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

hadoop 2.6 line 包括三部分

Hadoop Common

  1、Key management server (beta版本)。Hadoop KMS是基于KeyProvider API的密钥管理服务器,它是一个Java Web应用程序,内部提供了客户端和服务器组建,它们之间通过REST API在HTTP协议上通信。客户端是KeyProvider的一种实现,并通过KMS HTTP REST API和KMS交互。KMS和它的客户端内置了安全机制,支持HTTP SPNEGO Kerberos授权和HTTPS安全传输。Hadoop KMS对Hadoop和Hadoop用户来说是一个安全网关。它为现有的Hadoop安全组建(authenticatication, confidentiality)提供了相应的接口。(HADOOP-10433) 
  2、Credential provider(beta版本)。它是credential providers内部提供管理credentials, passwords and secrets的命令(HADOOP-10922、HADOOP-11031、HADOOP-10607)

Hadoop HDFS

  1、异构的存储层进入到第二阶段,主要更新有:(1)、异构存储的应用程序API;(2)、SSD存储层;(3)、内存作为存储层(beta版本)。 
  2、支持Archival存储 
  3、Transparent data at rest encryption 
  4、操作安全的DataNode,无需root访问权限(Operating secure DataNode without requiring root access)。 
  5、热插拔驱动器,支持动态的添加、删除DataNode上面的磁盘,而不需要重启DataNode(beta版本)。 
  6、AES(Advanced Encryption Standard)支持快速的wire encryption。

Hadoop YARN

  1、在YARN中支持长时间运行的服务,支持应用程序的服务注册。 
  2、支持滚动升级:(1)、ResourceManager上的工作可以保存起来,并可以继续运行;(2)、NodeManager上的Container可以保存起来,,并可以继续运行。 
  3、Support node labels during scheduling; 
  4、在CapacityScheduler中支持基于时间的资源保留(beta版本); 
  5、为application artifacts提供了一个全局的,共享内存(beta版本); 
  6、支持在Docker容器中本地地运行applications(alpha版本)。

hadoop 2.7 line 包括四部分

从2.7版本开始, Hadoop 依赖于 Java 7. It is built and tested on both OpenJDK and Oracle (HotSpot)’s JDK/JRE.

Hadoop Common

  1、支持Windows Azure Storage,BLOB作为Hadoop中的文件系统。

Hadoop HDFS

  1、支持文件截断(file truncate); 
  2、支持每个存储类型配额(Support for quotas per storage type); 
  3、支持可变长度的块文件

Hadoop YARN

  1、YARN安全模块可插拔 
  2、YARN的本地化资源可以自动共享,全局缓存(测试版)

Hadoop MapReduce

  1、能够限制运行的Map/Reduce作业的任务 
  2、为非常的大Job(有许多输出文件)加快了FileOutputCommitter。

转载于:https://my.oschina.net/blueskyer/blog/739101

486_0003 running in uber mode : false 2025-06-11 18:48:39,482 INFO mapreduce.Job: map 0% reduce 0% 2025-06-11 18:48:45,635 INFO mapreduce.Job: Task Id : attempt_1744881937486_0003_m_000000_0, Status : FAILED Error: java.lang.RuntimeException: PipeMapRed.waitOutputThreads(): subprocess failed with code 1 at org.apache.hadoop.streaming.PipeMapRed.waitOutputThreads(PipeMapRed.java:325) at org.apache.hadoop.streaming.PipeMapRed.mapRedFinished(PipeMapRed.java:538) at org.apache.hadoop.streaming.PipeMapper.close(PipeMapper.java:130) at org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:61) at org.apache.hadoop.streaming.PipeMapRunner.run(PipeMapRunner.java:34) at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:465) at org.apache.hadoop.mapred.MapTask.run(MapTask.java:349) at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:174) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1729) at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:168) 2025-06-11 18:48:46,677 INFO mapreduce.Job: map 50% reduce 0% 2025-06-11 18:48:50,727 INFO mapreduce.Job: Task Id : attempt_1744881937486_0003_m_000000_1, Status : FAILED Error: java.lang.RuntimeException: PipeMapRed.waitOutputThreads(): subprocess failed with code 1 at org.apache.hadoop.streaming.PipeMapRed.waitOutputThreads(PipeMapRed.java:325) at org.apache.hadoop.streaming.PipeMapRed.mapRedFinished(PipeMapRed.java:538) at org.apache.hadoop.streaming.PipeMapper.close(PipeMapper.java:130) at org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:61) at org.apache.hadoop.streaming.PipeMapRunner.run(PipeMapRunner.java:34) at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:465) at org.apache.hadoop.mapred.MapTask.run(MapTask.java:349) at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:174) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1729) at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:168) 2025-06-11 18:48:52,758 INFO mapreduce.Job: Task Id : attempt_1744881937486_0003_r_000000_0, Status : FAILED [2025-06-11 18:48:51.419]Container [pid=71601,containerID=container_1744881937486_0003_01_000005] is running 537561600B beyond the 'VIRTUAL' memory limit. Current usage: 166.6 MB of 1 GB physical memory used; 2.6 GB of 2.1 GB virtual memory used. Killing container. Dump of the process-tree for container_1744881937486_0003_01_000005 : |- PID PPID PGRPID SESSID CMD_NAME USER_MODE_TIME(MILLIS) SYSTEM_TIME(MILLIS) VMEM_USAGE(BYTES) RSSMEM_USAGE(PAGES) FULL_CMD_LINE |- 71601 71599 71601 71601 (bash) 0 1 116002816 303 /bin/bash -c /usr/local/jdk1.8.0_391/bin/java -Djava.net.preferIPv4Stack=true -Dhadoop.metrics.log.level=WARN -Xmx820m -Djava.io.tmpdir=/tmp/hadoop-root/nm-local-dir/usercache/root/appcache/application_1744881937486_0003/container_1744881937486_0003_01_000005/tmp -Dlog4j.configuration=container-log4j.properties -Dyarn.app.container.log.dir=/root/software/hadoop-3.1.3/logs/userlogs/application_1744881937486_0003/container_1744881937486_0003_01_000005 -Dyarn.app.container.log.filesize=0 -Dhadoop.root.logger=INFO,CLA -Dhadoop.root.logfile=syslog -Dyarn.app.mapreduce.shuffle.logger=INFO,shuffleCLA -Dyarn.app.mapreduce.shuffle.logfile=syslog.shuffle -Dyarn.app.mapreduce.shuffle.log.filesize=0 -Dyarn.app.mapreduce.shuffle.log.backups=0 org.apache.hadoop.mapred.YarnChild 192.168.30.110 37705 attempt_1744881937486_0003_r_000000_0 5 1>/root/software/hadoop-3.1.3/logs/userlogs/application_1744881937486_0003/container_1744881937486_0003_01_000005/stdout 2>/root/software/hadoop-3.1.3/logs/userlogs/application_1744881937486_0003/container_1744881937486_0003_01_000005/stderr |- 71616 71601 71601 71601 (java) 453 87 2676416512 42355 /usr/local/jdk1.8.0_391/bin/java -Djava.net.preferIPv4Stack=true -Dhadoop.metrics.log.level=WARN -Xmx820m -Djava.io.tmpdir=/tmp/hadoop-root/nm-local-dir/usercache/root/appcache/application_1744881937486_0003/container_1744881937486_0003_01_000005/tmp -Dlog4j.configuration=container-log4j.properties -Dyarn.app.container.log.dir=/root/software/hadoop-3.1.3/logs/userlogs/application_1744881937486_0003/container_1744881937486_0003_01_000005 -Dyarn.app.container.log.filesize=0 -Dhadoop.root.logger=INFO,CLA -Dhadoop.root.logfile=syslog -Dyarn.app.mapreduce.shuffle.logger=INFO,shuffleCLA -Dyarn.app.mapreduce.shuffle.logfile=syslog.shuffle -Dyarn.app.mapreduce.shuffle.log.filesize=0 -Dyarn.app.mapreduce.shuffle.log.backups=0 org.apache.hadoop.mapred.YarnChild 192.168.30.110 37705 attempt_1744881937486_0003_r_000000_0 5 [2025-06-11 18:48:51.462]Container killed on request. Exit code is 143 [2025-06-11 18:48:51.478]Container exited with a non-zero exit code 143. 2025-06-11 18:48:54,802 INFO mapreduce.Job: Task Id : attempt_1744881937486_0003_m_000000_2, Status : FAILED Error: java.lang.RuntimeException: PipeMapRed.waitOutputThreads(): subprocess failed with code 1 at org.apache.hadoop.streaming.PipeMapRed.waitOutputThreads(PipeMapRed.java:325) at org.apache.hadoop.streaming.PipeMapRed.mapRedFinished(PipeMapRed.java:538) at org.apache.hadoop.streaming.PipeMapper.close(PipeMapper.java:130) at org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:61) at org.apache.hadoop.streaming.PipeMapRunner.run(PipeMapRunner.java:34) at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:465) at org.apache.hadoop.mapred.MapTask.run(MapTask.java:349) at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:174) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1729) at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:168) 2025-06-11 18:49:00,976 INFO mapreduce.Job: map 100% reduce 100% 2025-06-11 18:49:01,992 INFO mapreduce.Job: Job job_1744881937486_0003 failed with state FAILED due to: Task failed task_1744881937486_0003_m_000000 Job failed as tasks failed. failedMaps:1 failedReduces:0 killedMaps:0 killedReduces: 0 2025-06-11 18:49:02,105 INFO mapreduce.Job: Counters: 42 File System Counters FILE: Number of bytes read=0 FILE: Number of bytes written=352125 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=1771275 HDFS: Number of bytes written=0 HDFS: Number of read operations=3 HDFS: Number of large read operations=0 HDFS: Number of write operations=0 Job Counters Failed map tasks=4 Failed reduce tasks=1 Killed reduce tasks=1 Launched map tasks=5 Launched reduce tasks=2 Other local map tasks=3 Data-local map tasks=2 Total time spent by all maps in occupied slots (ms)=18987 Total time spent by all reduces in occupied slots (ms)=8718 Total time spent by all map tasks (ms)=18987 Total time spent by all reduce tasks (ms)=8718 Total vcore-milliseconds taken by all map tasks=18987 Total vcore-milliseconds taken by all reduce tasks=8718 Total megabyte-milliseconds taken by all map tasks=19442688 Total megabyte-milliseconds taken by all reduce tasks=8927232 Map-Reduce Framework Map input records=10009 Map output records=10009 Map output bytes=110099 Map output materialized bytes=130123 Input split bytes=92 Combine input records=0 Spilled Records=10009 Failed Shuffles=0 Merged Map outputs=0 GC time elapsed (ms)=121 CPU time spent (ms)=1250 Physical memory (bytes) snapshot=268398592 Virtual memory (bytes) snapshot=2787106816 Total committed heap usage (bytes)=249036800 Peak Map Physical memory (bytes)=268398592 Peak Map Virtual memory (bytes)=2787106816 File Input Format Counters Bytes Read=1771183 2025-06-11 18:49:02,105 ERROR streaming.StreamJob: Job not successful! Streaming Command Failed! [root@master ~]#
06-12
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值