[20161226]关于sys.seg$.txt

本文详细介绍了Oracle数据库中不同类型的段及其对应的表和索引如何在文件系统中组织和存储。通过具体实例展示了如何查询和理解SYS.seg$表中的记录,揭示了不同段类型的特点及其实现方式。

[20161226]关于sys.seg$.txt

1.环境:
SYS@book> @ &r/ver1
PORT_STRING                    VERSION        BANNER
------------------------------ -------------- --------------------------------------------------------------------------------
x86_64/Linux 2.4.xx            11.2.0.4.0     Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 - 64bit Production

SYS@book> select * from dba_objects where owner='SYS' and object_name='SEG$';
OWNER  OBJECT_NAME          SUBOBJECT_  OBJECT_ID DATA_OBJECT_ID OBJECT_TYPE         CREATED             LAST_DDL_TIME       TIMESTAMP           STATUS  T G S  NAMESPACE EDITION_NAME
------ -------------------- ---------- ---------- -------------- ------------------- ------------------- ------------------- ------------------- ------- - - - ---------- ------------------------------
SYS    SEG$                                    14              8 TABLE               2013-08-24 11:37:35 2013-08-24 11:59:25 2013-08-24:11:37:35 VALID   N N N          1

--小于OBJECT_ID<59的对象,有bootstrap$引导建立.

SYS@book> select * from bootstrap$ where obj#=14;
     LINE#       OBJ# SQL_TEXT
---------- ---------- ------------------------------------------------------------
        14         14 CREATE TABLE SEG$("FILE#" NUMBER NOT NULL,"BLOCK#" NUMBER NO
                      T NULL,"TYPE#" NUMBER NOT NULL,"TS#" NUMBER NOT NULL,"BLOCKS
                      " NUMBER NOT NULL,"EXTENTS" NUMBER NOT NULL,"INIEXTS" NUMBER
                       NOT NULL,"MINEXTS" NUMBER NOT NULL,"MAXEXTS" NUMBER NOT NUL
                      L,"EXTSIZE" NUMBER NOT NULL,"EXTPCT" NUMBER NOT NULL,"USER#"
                       NUMBER NOT NULL,"LISTS" NUMBER,"GROUPS" NUMBER,"BITMAPRANGE
                      S" NUMBER NOT NULL,"CACHEHINT" NUMBER NOT NULL,"SCANHINT" NU
                      MBER NOT NULL,"HWMINCR" NUMBER NOT NULL,"SPARE1" NUMBER,"SPA
                      RE2" NUMBER) STORAGE (  OBJNO 14 TABNO 2) CLUSTER C_FILE#_BL
                      OCK#(TS#,FILE#,BLOCK#)

2.查看:
SYS@book> select * from sys.seg$ where file#=4;
FILE# BLOCK# TYPE# TS# BLOCKS EXTENTS INIEXTS MINEXTS    MAXEXTS EXTSIZE EXTPCT USER# LISTS GROUPS BITMAPRANGES CACHEHINT SCANHINT HWMINCR  SPARE1     SPARE2
----- ------ ----- --- ------ ------- ------- ------- ---------- ------- ------ ----- ----- ------ ------------ --------- -------- ------- ------- ----------
    4    130     5   4      8       1       8       1 2147483645     128      0    83     0      0   2147483645         0        0   87106 4325633
    4    138     6   4      8       1       8       1 2147483645     128      0    83     0      0   2147483645         0        0   87107 4325633
    4    146     5   4      8       1       8       1 2147483645     128      0    83     0      0   2147483645         0        0   87108 4325633
    4    154     6   4      8       1       8       1 2147483645     128      0    83     0      0   2147483645         0        0   87109 4325633
    4    162     5   4      8       1       8       1 2147483645     128      0    83     0      0   2147483645         0        0   87111 4325633
    4    170     5   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88489 4325633
    4    178     8   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88490 4325633
    4    186     6   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88491 4325633
    4    194     6   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88492 4325633
    4    202     5   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88493 4194561
    4    210     8   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88494 4325633
    4    218     6   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88495 4325633
    4    226     8   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88496 4325633
    4    234     6   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88497 4325633
    4    242     6   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88498 4194561
    4    250     5   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88488 4194561
    4    258     8   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88499 4325633
    4    266     6   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88500 4325633
    4    274     8   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88501 4325633
    4    282     6   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88502 4325633
    4    290     8   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88503 4325633
    4    298     6   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88504 4325633
    4    306     8   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88505 4325633
    4    314     6   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88506 4325633
    4    322     8   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88507 4325633
    4    330     6   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88508 4325633
    4    338     8   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88509 4325633
    4    346     6   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88510 4325633
    4    354     8   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88511 4325633
    4    362     6   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88512 4325633
    4    370     6   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88513 4325633
    4    378     6   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88514 4325633
    4    386     6   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88515 4325633
    4    450     5   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88539 4325633
    4    458     6   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88540 4325633
    4    466     5   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88541 4325633
    4    474     6   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88542 4325633
    4    482     5   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88538 4325633
    4    490     6   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88543 4325633
    4    498     6   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88544 4325633
    4    506     6   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88545 4325633
    4    514     6   4      8       1       8       1 2147483645     128      0    85     0      0   2147483645         0        0   88546 4325633
42 rows selected.

SYS@book> @ &r/which_obj 4 130
OWNER  SEGMENT_NAME         PARTITION_NAME SEGMENT_TYPE TABLESPACE_NAME  EXTENT_ID    FILE_ID   BLOCK_ID      BYTES     BLOCKS RELATIVE_FNO
------ -------------------- -------------- ------------ --------------- ---------- ---------- ---------- ---------- ---------- ------------
SCOTT  DEPT                                TABLE        USERS                    0          4        128      65536          8            4

SYS@book> @ &r/which_obj 4 138
OWNER  SEGMENT_NAME         PARTITION_NAME SEGMENT_TYPE TABLESPACE_NAME  EXTENT_ID    FILE_ID   BLOCK_ID      BYTES     BLOCKS RELATIVE_FNO
------ -------------------- -------------- ------------ --------------- ---------- ---------- ---------- ---------- ---------- ------------
SCOTT  PK_DEPT                             INDEX        USERS                    0          4        136      65536          8            4
--可以看出type#=5对应是表,type#6=对应索引.
--如果仔细检查可以里面记录的是段的块头.实际上如果全表扫描开始扫的就是段头.段头坏了,全表扫描可能失败.

SYS@book> select SEGMENT_NAME,SEGMENT_TYPE,TABLESPACE_NAME,HEADER_FILE,HEADER_BLOCK from dba_segments where owner='SCOTT' and header_file=4;
SEGMENT_NAME SEGMENT_TYPE TABLESPACE_NAME HEADER_FILE HEADER_BLOCK
------------ ------------ --------------- ----------- ------------
DEPT         TABLE        USERS                     4          130
EMP          TABLE        USERS                     4          146
SALGRADE     TABLE        USERS                     4          162
PK_DEPT      INDEX        USERS                     4          138
PK_EMP       INDEX        USERS                     4          154

SYS@book> @ &r/which_obj 4 178
OWNER  SEGMENT_NAME         SEGMENT_TYPE TABLESPACE_NAME  EXTENT_ID    FILE_ID   BLOCK_ID      BYTES     BLOCKS RELATIVE_FNO
------ -------------------- ------------ --------------- ---------- ---------- ---------- ---------- ---------- ------------
OE     SYS_LOB0000088489C00 LOBSEGMENT   USERS                    0          4        176      65536          8            4
       004$$
--type#=8对应LOB类型.

SYS@book> @ &r/which_obj 4 186
OWNER  SEGMENT_NAME         SEGMENT_TYPE TABLESPACE_NAME  EXTENT_ID    FILE_ID   BLOCK_ID      BYTES     BLOCKS RELATIVE_FNO
------ -------------------- ------------ --------------- ---------- ---------- ---------- ---------- ---------- ------------
OE     SYS_IL0000088489C000 LOBINDEX     USERS                    0          4        184      65536          8            4
       04$$

--lob类型的索引也是type#=6.看看当前的数据库存在几种类型:

SYS@book> select distinct type# from sys.seg$ --where file#=4;
TYPE#
-----
    1
    6
    5
    8
   10

--还有2种类型1,10,看看到底是什么段.

-- type#=1
SYS@book> select * from sys.seg$ where type#=1;
     FILE#     BLOCK#      TYPE#        TS#     BLOCKS    EXTENTS    INIEXTS    MINEXTS    MAXEXTS    EXTSIZE     EXTPCT      USER#      LISTS     GROUPS BITMAPRANGES  CACHEHINT   SCANHINT    HWMINCR     SPARE1     SPARE2
---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ------------ ---------- ---------- ---------- ---------- ----------
         1        128          1          0          8          1         14          1      32765          7          0          0          0          0   2147483645          0          0          0    4194307

SYS@book> @ &r/which_obj 1 128
OWNER  SEGMENT_NAME         SEGMENT_TYPE       TABLESPACE_NAME                 EXTENT_ID    FILE_ID   BLOCK_ID      BYTES     BLOCKS RELATIVE_FNO
------ -------------------- ------------------ ------------------------------ ---------- ---------- ---------- ---------- ---------- ------------
SYS    SYSTEM               ROLLBACK           SYSTEM                                  0          1        128      65536          8            1
--type#=1 是系统回滚段.

SYS@book> select * from sys.seg$ where type#=10;
FILE#     BLOCK#      TYPE#        TS#     BLOCKS    EXTENTS    INIEXTS    MINEXTS    MAXEXTS    EXTSIZE     EXTPCT      USER#      LISTS     GROUPS BITMAPRANGES  CACHEHINT   SCANHINT    HWMINCR     SPARE1     SPARE2
----- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ------------ ---------- ---------- ---------- ---------- ----------
    3        144         10          2          8          1         16          2      32765          8          0          0          0          0            0          0          0          2    4194307
    3        160         10          2          8          1         16          2      32765          8          0          0          0          0            0          0          0          3    4194307
    3        176         10          2          8          1         16          2      32765          8          0          0          0          0            0          0          0          4    4194307
    3        192         10          2          8          1         16          2      32765          8          0          0          0          0            0          0          0          5    4194307
    3        208         10          2          8          1         16          2      32765          8          0          0          0          0            0          0          0          6    4194307
    3        224         10          2          8          1         16          2      32765          8          0          0          0          0            0          0          0          7    4194307
    3        240         10          2          8          1         16          2      32765          8          0          0          0          0            0          0          0          8    4194307
    3        256         10          2          8          1         16          2      32765          8          0          0          0          0            0          0          0          9    4194307
    3        272         10          2          8          1         16          2      32765          8          0          0          0          0            0          0          0         10    4194307
    3        128         10          2          8          1         16          2      32765          8          0          0          0          0            0          0          0          1    4194307
10 rows selected.

SYS@book> @ &r/which_obj 3 128
OWNER  SEGMENT_NAME         SEGMENT_TYPE       TABLESPACE_NAME                 EXTENT_ID    FILE_ID   BLOCK_ID      BYTES     BLOCKS RELATIVE_FNO
------ -------------------- ------------------ ------------------------------ ---------- ---------- ---------- ---------- ---------- ------------
SYS    _SYSSMU1_3724004606$ TYPE2 UNDO         UNDOTBS1                                0          3        128      65536          8            3

--type#=10 , 是用户回滚段(普通回滚段)

3.测试mssm的表空间看看:
CREATE TABLESPACE tea DATAFILE
  '/mnt/ramdisk/book/tea01.dbf' SIZE 10M AUTOEXTEND ON NEXT 1280K MAXSIZE UNLIMITED
LOGGING
ONLINE
EXTENT MANAGEMENT LOCAL AUTOALLOCATE
BLOCKSIZE 8K
SEGMENT SPACE MANAGEMENT manual
FLASHBACK ON;

SCOTT@book> create table deptx tablespace tea as select * from dept;
Table created.

SCOTT@book> create index pk_deptx  on deptx(deptno) tablespace tea;
Index created.

SCOTT@book> select * from sys.seg$ where file#=6;
FILE# BLOCK# TYPE# TS# BLOCKS EXTENTS INIEXTS MINEXTS    MAXEXTS EXTSIZE EXTPCT USER# LISTS GROUPS BITMAPRANGES  CACHEHINT   SCANHINT    HWMINCR     SPARE1     SPARE2
----- ------ ----- --- ------ ------- ------- ------- ---------- ------- ------ ----- ----- ------ ------------ ---------- ---------- ---------- ---------- ----------
    6    128     5   7      8       1       8       1 2147483645     128      0    83     0      0   2147483645          0          0      88921    4325377
    6    136     6   7      8       1       8       1 2147483645     128      0    83     0      0   2147483645          0          0      88922    4325377

SCOTT@book> select SEGMENT_NAME,SEGMENT_TYPE,TABLESPACE_NAME,HEADER_FILE,HEADER_BLOCK from dba_segments where owner='SCOTT' and header_file=6;
SEGMENT_NAME         SEGMENT_TYPE       TABLESPACE_NAME                HEADER_FILE HEADER_BLOCK
-------------------- ------------------ ------------------------------ ----------- ------------
DEPTX                TABLE              TEA                                      6          128
PK_DEPTX             INDEX              TEA                                      6          136

--依旧记录的是文件头.类型与前面一样.

按照上述方案,请将该代码优化修整:from __future__ import annotations import sys sys.path.append("D:/LY/work/DiffV2IR/download-package") sys.path.append("D:/LY/work/DiffV2IR/download-package/CLIP") sys.path.append("D:/LY/work/DiffV2IR/download-package/k-diffusion") sys.path.append("D:/LY/work/DiffV2IR/download-package/stable_diffusion") sys.path.append("D:/LY/work/DiffV2IR/download-package/taming-transformers") import math import random from argparse import ArgumentParser import os import einops import k_diffusion as K import numpy as np import torch import torch.nn as nn from einops import rearrange from omegaconf import OmegaConf from PIL import Image, ImageOps from torch import autocast import shutil import requests import torch from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from blip_models.blip import blip_decoder import json import os from stable_diffusion.ldm.util import instantiate_from_config import json class CFGDenoiser(nn.Module): def __init__(self, model): super().__init__() self.inner_model = model def forward(self, z, sigma, cond, uncond, text_cfg_scale, image_cfg_scale,seg_cfg_scale): cfg_z = einops.repeat(z, "1 ... -> n ...", n=4) cfg_sigma = einops.repeat(sigma, "1 ... -> n ...", n=4) cfg_cond = { "c_crossattn": [torch.cat([cond["c_crossattn"][0], uncond["c_crossattn"][0],uncond["c_crossattn"][0], uncond["c_crossattn"][0]])], "c_concat1": [torch.cat([cond["c_concat1"][0], cond["c_concat1"][0], uncond["c_concat1"][0], uncond["c_concat1"][0]])], "c_concat2": [torch.cat([cond["c_concat2"][0], cond["c_concat2"][0],cond["c_concat2"][0], uncond["c_concat2"][0]])], } out_cond, out_img_cond, out_seg_cond, out_uncond = self.inner_model(cfg_z, cfg_sigma, cond=cfg_cond).chunk(4) return out_uncond + text_cfg_scale * (out_cond - out_img_cond) + image_cfg_scale * (out_img_cond - out_seg_cond)+seg_cfg_scale * (out_seg_cond - out_uncond) def get_text_for_image(image_filename, json_file): with open(json_file, 'r', encoding='utf-8') as infile: image_text_data = json.load(infile) if image_filename in image_text_data: return image_text_data[image_filename] else: return None def load_model_from_config(config, ckpt, vae_ckpt=None, verbose=False): print(f"Loading model from {ckpt}") pl_sd = torch.load(ckpt, map_location="cpu") if "global_step" in pl_sd: print(f"Global Step: {pl_sd['global_step']}") sd = pl_sd["state_dict"] if vae_ckpt is not None: print(f"Loading VAE from {vae_ckpt}") vae_sd = torch.load(vae_ckpt, map_location="cpu")["state_dict"] sd = { k: vae_sd[k[len("first_stage_model.") :]] if k.startswith("first_stage_model.") else v for k, v in sd.items() } model = instantiate_from_config(config.model) m, u = model.load_state_dict(sd, strict=False) if len(m) > 0 and verbose: print("missing keys:") print(m) if len(u) > 0 and verbose: print("unexpected keys:") print(u) return model def load_demo_image(image_size,device,img_url): raw_image = Image.open(img_url).convert('RGB') w,h = raw_image.size transform = transforms.Compose([ transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) ]) image = transform(raw_image).unsqueeze(0) return image def main(): parser = ArgumentParser() parser.add_argument("--resolution", default=512, type=int) parser.add_argument("--steps", default=100, type=int) parser.add_argument("--config", default="configs/generate.yaml", type=str) parser.add_argument("--ckpt", default="", type=str) parser.add_argument("--vae-ckpt", default=None, type=str) parser.add_argument("--input", required=True, type=str) parser.add_argument("--output", required=True, type=str) parser.add_argument("--edit", default="turn the RGB image into the infrared one",type=str) parser.add_argument("--cfg-text", default=7.5, type=float) parser.add_argument("--cfg-image", default=1.5, type=float) parser.add_argument("--cfg-seg", default=1.5, type=float) parser.add_argument("--seed", type=int) args = parser.parse_args() #os.makedirs('/home/jovyan/.cache/torch/hub/checkpoints/') #shutil.copy("checkpoint_liberty_with_aug.pth","/home/jovyan/.cache/torch/hub/checkpoints/") config = OmegaConf.load(args.config) model = load_model_from_config(config, args.ckpt, args.vae_ckpt) model.eval().cuda() model_wrap = K.external.CompVisDenoiser(model) model_wrap_cfg = CFGDenoiser(model_wrap) null_token = model.get_learned_conditioning([""]) blip_model = blip_decoder(pretrained="D:/LY/work/DiffV2IR/download-package/model_base_caption_capfilt_large.pth", image_size=384, vit='base') blip_model.eval() seed = random.randint(0, 100000) if args.seed is None else args.seed for root, dirs, files in os.walk(args.input): for file in files: image = load_demo_image(image_size=384, device='cuda',img_url=os.path.join(root,file)) with torch.no_grad(): caption = blip_model.generate(image, sample=True, top_p=0.9, max_length=20, min_length=5) args.edit = "turn the visible image of "+caption[0]+" into infrared" input_image = Image.open(os.path.join(args.input,file)).convert("RGB") input_seg = Image.open(os.path.join(args.input+"_seg",file.split(".")[0]+".png")).convert("RGB") width, height = input_image.size factor = args.resolution / max(width, height) factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height) width = int((width * factor) // 64) * 64 height = int((height * factor) // 64) * 64 input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS) input_seg = ImageOps.fit(input_seg, (width, height), method=Image.Resampling.LANCZOS) if args.edit == "": input_image.save(os.path.join(args.output,file)) return with torch.no_grad(), autocast("cuda"), model.ema_scope(): cond = {} cond["c_crossattn"] = [model.get_learned_conditioning([args.edit])] input_image = 2 * torch.tensor(np.array(input_image)).float() / 255 - 1 input_seg = 2 * torch.tensor(np.array(input_seg)).float() / 255 - 1 input_image = rearrange(input_image, "h w c -> 1 c h w").to(model.device) input_seg = rearrange(input_seg, "h w c -> 1 c h w").to(model.device) cond["c_concat1"] = [model.encode_first_stage(input_image).mode()] cond["c_concat2"] = [model.encode_first_stage(input_seg).mode()] uncond = {} uncond["c_crossattn"] = [null_token] uncond["c_concat1"] = [torch.zeros_like(cond["c_concat1"][0])] uncond["c_concat2"] = [torch.zeros_like(cond["c_concat2"][0])] sigmas = model_wrap.get_sigmas(args.steps) extra_args = { "cond": cond, "uncond": uncond, "text_cfg_scale": args.cfg_text, "image_cfg_scale": args.cfg_image, "seg_cfg_scale": args.cfg_seg, } torch.manual_seed(seed) z = torch.randn_like(cond["c_concat1"][0]) * sigmas[0] z = K.sampling.sample_euler_ancestral(model_wrap_cfg, z, sigmas, extra_args=extra_args) x = model.decode_first_stage(z) x = torch.clamp((x + 1.0) / 2.0, min=0.0, max=1.0) x = 255.0 * rearrange(x, "1 c h w -> h w c") edited_image = Image.fromarray(x.type(torch.uint8).cpu().numpy()) edited_image.save(os.path.join(args.output,file)) if __name__ == "__main__": main()
05-31
接上面代码,cell_count_output = "/data1/zhaoshutao/projectworkspace/nucleus_recognition/sandiantu_20240716_c2l_card_cyto/run_spot_counts_results" # 细胞核识别之后的所有细胞的坐标 # all_cell_seg_pic = "".join([cell_count_output, "/",sample, "_all_cell_seg_pic.csv"]) # 细胞核识别之后统计好的每一个spot的barcode,组织区域,坐标,细胞数量,细胞核中心坐标,spot间的位置是邻居spot的barcode的组合使用"_"分隔 if sample=="WMQ-627-mSpl": point_cell_count = "".join([cell_count_output, "/WMQ-627-mSpleen_point_counts.csv"]) elif sample in ["WMQ-732-mOva","WMQ-731-mOva"]: sampleova = sample.replace("mOva","mOVA") point_cell_count = "".join([cell_count_output, "/",sampleova, "_point_counts.csv"]) else: point_cell_count = "".join([cell_count_output, "/",sample, "_point_counts.csv"]) point_cell_count_pos = pd.read_csv(point_cell_count,index_col=0) # cell2location解卷积结果,每一行是spot的barcode,每一列是细胞类型,值表示细胞丰度 if c2lpropfile.endswith('.csv'): celltype_Frequency_c2l = pd.read_csv(c2lpropfile,index_col=0) elif c2lpropfile.endswith('.txt'): celltype_Frequency_c2l = pd.read_table(c2lpropfile,index_col=0) else: sys.exit(1) celltype_Frequency_c2l.columns = celltype_Frequency_c2l.columns.str.replace('q05cell_abundance_w_sf_', '') celltype_Frequency_c2l.columns = celltype_Frequency_c2l.columns.str.replace('.', ' ', regex=False) # 打印一下输入的各种信息 print("point_cell_count: ", point_cell_count,"\nc2lpropfile: ", c2lpropfile,"\nsavepath: ", savepath)
03-14
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值