Convolution 中 group 参数

本文深入解析了Caffe官方文档与Alex Krizhevsky论文中关于group参数的定义及其在AlexNet中的应用,解释了group参数如何实现分组卷积,并讨论了其历史背景和在不同任务上的性能、速度与内存使用之间的权衡。
  1. caffe 官方文档定义:

    group (g) [default 1]: If g > 1, we restrict the connectivity of each filter to a subset of the input. Specifically, the input and output channels are separated into g groups, and the i-th output group channels will be only connected to the i-th input group channels.

  2. Jia Yangqing 论坛回复:

    It was there to implement the grouped convolution in Alex Krizhevsky's paper: when group=2, the first half of the filters are only connected to the first half of the input channels, and the second half only connected to the second half.

    To group seems like a historical accident from the practical constraints of the time, but I don't know of a side-by-side comparison of group and no-group models. It could be nice to settle the question on the axes of task performance, speed + memory, and optimization time + hassle.

  3. Alex Krizhevsky's paper 中conv的定义:

    convolution_param {
    num_output: 256
    pad: 2
    kernel_size: 5
    group: 2
    weight_filler {
    type: "gaussian"
    std: 0.01
    }
    bias_filler {
    type: "constant"
    value: 1
    }

结论:Alex文章中是多个显卡,可能基于并行内存等考虑。所以以后少用。。。

reference:
http://caffe.berkeleyvision.org/tutorial/layers.html
https://github.com/BVLC/caffe/issues/778

转载于:https://www.cnblogs.com/penguins/p/5103360.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值