Leetcode: Sliding Window Median

本文介绍了一种计算滑动窗口中位数的有效算法,通过维护两个堆来跟踪窗口内的最小和最大值,实现快速更新中位数。具体包括算法的实现细节、时间复杂度分析及示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 1 Median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle value.
 2 
 3 Examples: 
 4 [2,3,4] , the median is 3
 5 
 6 [2,3], the median is (2 + 3) / 2 = 2.5
 7 
 8 Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position. Your job is to output the median array for each window in the original array.
 9 
10 For example,
11 Given nums = [1,3,-1,-3,5,3,6,7], and k = 3.
12 
13 Window position                Median
14 ---------------               -----
15 [1  3  -1] -3  5  3  6  7       1
16  1 [3  -1  -3] 5  3  6  7       -1
17  1  3 [-1  -3  5] 3  6  7       -1
18  1  3  -1 [-3  5  3] 6  7       3
19  1  3  -1  -3 [5  3  6] 7       5
20  1  3  -1  -3  5 [3  6  7]      6
21 Therefore, return the median sliding window as [1,-1,-1,3,5,6].

方法1:Time Complexity O(NK)

暂时只有两个Heap的做法,缺点:In this problem, it is necessary to be able remove elements that are not necessarily at the top of the heap. PriorityQueue has logarithmic time remove top, but a linear time remove arbitrary element.

For a Heap:

remove():  Time Complexity is O(logN)

remove(Object): Time Complexity is O(N)

更好的有multiset的方法,但是还没有看到好的java version的

最大堆的简单定义方法:Collections.reverseOrder(), Returns a comparator that imposes the reverse of the natural ordering on a collection of objects 

 1 public class Solution {
 2     PriorityQueue<Double> high = new PriorityQueue();
 3     PriorityQueue<Double> low = new PriorityQueue(Collections.reverseOrder());
 4     
 5     
 6     public double[] medianSlidingWindow(int[] nums, int k) {
 7         double[] res = new double[nums.length-k+1];
 8         int index = 0;
 9 
10         for (int i=0; i<nums.length; i++) {
11             if (i >= k) remove(nums[i-k]);
12             add((double)nums[i]);
13             if (i >= k-1) {
14                 res[index++] = findMedian();
15             }
16         }
17         return res;
18     }
19     
20     public void add(double num) {
21         low.offer(num);
22         high.offer(low.poll());
23         if (low.size() < high.size()) {
24             low.offer(high.poll());
25         }
26     }
27     
28     public double findMedian() {
29         if (low.size() == high.size()) {
30             return (low.peek() + high.peek()) / 2.0;
31         }
32         else return low.peek();
33     }
34     
35     public void remove(double num) {
36         if (num <= findMedian()) {
37             low.remove(num);
38         }
39         else {
40             high.remove(num);
41         }
42         if (low.size() < high.size()) {
43             low.offer(high.poll());
44         }
45         else if (low.size() > high.size()+1) {
46             high.offer(low.poll());
47         }
48     }
49 }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值