hdu 1503:Advanced Fruits(动态规划 DP & 最长公共子序列(LCS)问题升级版)

本文介绍了一种使用动态规划方法解决特定问题的技术:如何为两种水果的组合创造一个最短且包含两者名称的合成名称。通过实例分析,演示了如何通过LCS算法和路径记录来高效求解最优名称,并提供了具体的代码实现。此技术适用于类似问题的快速解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Advanced Fruits

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1360    Accepted Submission(s): 672
Special Judge


Problem Description
The company "21st Century Fruits" has specialized in creating new sorts of fruits by transferring genes from one fruit into the genome of another one. Most times this method doesn't work, but sometimes, in very rare cases, a new fruit emerges that tastes like a mixture between both of them. 
A big topic of discussion inside the company is "How should the new creations be called?" A mixture between an apple and a pear could be called an apple-pear, of course, but this doesn't sound very interesting. The boss finally decides to use the shortest string that contains both names of the original fruits as sub-strings as the new name. For instance, "applear" contains "apple" and "pear" (APPLEar and apPlEAR), and there is no shorter string that has the same property. 

A combination of a cranberry and a boysenberry would therefore be called a "boysecranberry" or a "craboysenberry", for example. 

Your job is to write a program that computes such a shortest name for a combination of two given fruits. Your algorithm should be efficient, otherwise it is unlikely that it will execute in the alloted time for long fruit names. 
 

 

Input
Each line of the input contains two strings that represent the names of the fruits that should be combined. All names have a maximum length of 100 and only consist of alphabetic characters.

Input is terminated by end of file. 
 

 

Output
For each test case, output the shortest name of the resulting fruit on one line. If more than one shortest name is possible, any one is acceptable.
 

 

Sample Input
apple peach
ananas banana
pear peach
 

 

Sample Output
appleach
bananas
pearch

 

Source
 

 

Recommend
linle   |   We have carefully selected several similar problems for you:   1502  1501  1227  1080  1158  

 
    这是第二次坑在这道题上了,试验了好几种思路不就是运行时错误就是WA,最后火了还是看了别人的博客才做出来。
  思路很简单,在LCS的基础之上加上路径记录。生成dp数组的时候做上标记,之后按顺序输出结果字符串。
  我坑就坑在我没有想到好的记录路径的方法,还是高手的方法精炼,准确又简单。
  下面是代码,注意数组的初始化。
 
 1 #include <iostream>
 2 #include <string.h>
 3 using namespace std;
 4 int dp[1001][1001];
 5 int f[1001][1001];
 6 char a[1000],b[1000];
 7 int l1,l2;
 8 int Length(char a[])    //返回一字符串长度 
 9 {
10     int i;
11     for(i=0;a[i]!='\0';i++);
12     return i;
13 }
14 void lcs_pre(char a[],char b[])    //进行标记 
15 {
16     l1 = Length(a);
17     l2 = Length(b);
18     for(int i=0;i<=l1;i++){
19         dp[i][0] = 0;
20         f[i][0] = 3;
21     }
22     for(int i=0;i<=l2;i++){
23         dp[0][i] = 0;
24         f[0][i] = 1;
25     }
26     for(int i=1;i<=l1;i++)
27         for(int j=1;j<=l2;j++){
28             if( a[i-1]==b[j-1] ){
29                 dp[i][j] = dp[i-1][j-1] + 1;
30                 f[i][j] = 2;
31             }
32             else if( dp[i][j-1]>=dp[i-1][j] ){
33                 dp[i][j] = dp[i][j-1];
34                 f[i][j] = 1; 
35             }
36             else{
37                 dp[i][j] = dp[i-1][j];
38                 f[i][j] = 3;
39             }
40         }
41 }
42 void Print(int x,int y)    //输出结果字符串 
43 {
44     if(x==0 && y==0)
45         return ;
46     switch(f[x][y]){
47         case 1:
48             Print(x,y-1);
49             cout<<b[y-1];
50             break;
51         case 2:
52             Print(x-1,y-1);
53             cout<<a[x-1];
54             break;
55         case 3:
56             Print(x-1,y);
57             cout<<a[x-1];
58             break;
59         default:break;
60     }
61     return ;
62 }
63 int main()
64 {
65     while(cin>>a>>b){ 
66         l1 = Length(a);
67         l2 = Length(b);
68         lcs_pre(a,b);    //进行标记
69         Print(l1,l2);
70         cout<<endl;
71     }
72     return 0;
73 }

 

Freecode : www.cnblogs.com/yym2013

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值