poj 3169 Layout

探讨了牛排队布局问题,利用差分约束系统解决牛之间的距离限制,并通过SPFA算法寻找最大可能的距离。
Layout
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 10880 Accepted: 5233

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate). 

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated. 

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD. 

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart. 

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample: 

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart. 

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

Source

 
题目大意:
n头牛排队,有ml对牛彼此喜欢,距离必须<=d,有md对牛彼此讨厌,距离必须>=d,求队伍最长长度
无法排成队伍输出-1,队伍长度无限输出-2
 
注意点儿本题多组数据
 
差分约束 
若d[x]-d[y]<=/>= c ,则由y向x连一条权值为c的边
假设牛排队序号递增,d[i]表示i号牛所在位置
那么我们的目的是 d[n]-d[1]=T,最大化T
那么可以表示为 d[n]-d[1]<=T,即d[n]<=T+d[1],所以spfa跑最短路
若spfa出现环,说明不能排成一队,若1余n不连通,说明队伍长度无限
设两头牛为x,y且x<=y
若x,y彼此喜欢,约束条件1:d[y]-d[x]<=Di
若x,y彼此讨厌,约束条件2:d[y]-d[x]>=Di
隐藏条件,约束条件3:d[i]-d[i-1]>=1
把运算符与d[n]<=T+d[1]统一
即:
d[y]-d[x]<=Di
d[x]-d[y]<=-Di
d[i-1]-d[i]<=-1
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
using namespace std;
int n,ml,md,tot;
queue<int>q;
int sum[1001],front[1001];
long long dis[1001];
bool v[1001];
struct node
{
    int to,next,w;
}e[20001];
void add(int u,int v,int w)
{
    e[++tot].to=v;e[tot].next=front[u];e[tot].w=w;front[u]=tot;
}
void spfa()
{
    for(int i=1;i<=n;i++) dis[i]=1e15;
    memset(sum,0,sizeof(sum));
    memset(v,false,sizeof(v));
    while(!q.empty()) q.pop();
    q.push(1);dis[1]=0;v[1]=true;sum[1]++;
    while(!q.empty())
    {
        int now=q.front();q.pop();v[now]=false;
        for(int i=front[now];i;i=e[i].next)
        {
            int to=e[i].to;
            if(dis[to]>dis[now]+1ll*e[i].w)
            {
                dis[to]=dis[now]+1ll*e[i].w;
                if(!v[to])
                {
                    v[to]=true;
                    q.push(to);
                    sum[to]++;
                    if(sum[to]==n) 
                    {
                        printf("-1\n");
                        return;
                    }
                }
            }
        }
    }
    printf("%lld\n",dis[n]==1e15 ? -2:dis[n]);
}
int main()
{
    while(scanf("%d%d%d",&n,&ml,&md)!=EOF)
    {
        int u,v,w;
        for(int i=1;i<=n;i++) front[i]=0;
        for(int i=1;i<=ml;i++)
        {
            scanf("%d%d%d",&u,&v,&w);
            if(v>u) swap(u,v);//u>v,d[u]-d[v]<=w
            add(v,u,w);
        }
        for(int i=1;i<=md;i++)
        {
            scanf("%d%d%d",&u,&v,&w);
            if(v>u) swap(u,v);//u>v d[v]-d[u]<=-w
            add(u,v,-w);
        }
        for(int i=2;i<=n;i++) add(i,i-1,-1); 
        spfa();
    }

}

 

转载于:https://www.cnblogs.com/TheRoadToTheGold/p/6529879.html

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值