BlueSea笔记<1>--Cricket初探

本文深入探讨了Cricket框架中的Actor模式实现细节,通过具体的代码示例解释了计算表达式、消息处理以及异步行为的调度机制。

    最近在看Cricket这个实现了Actor模式的F#开源框架,对其工作方式作了一番探究。首先来看一段简单的例子代码:

 1 type Say = | Hello
 2 let greeter = 
 3     actor {
 4         name "greeter"
 5         body (
 6             let rec loop() = messageHandler {
 7                 let! msg = Message.receive()
 9                 match msg with
10                 | Hello ->  printfn "Hello"
11 
12                 return! loop()
13             }
14             loop())
15     } |> Actor.spawn

    先是定义了消息类型Say,接着通过computation-expression(计算表达式)的方式定义了greeter这个actor。actor计算表达式的定义见ActorConfigurationBuilder,包括body、name等都通过CustomOperationAttribute的方式给出了定义。比如body:

1         member __.Body(ctx, behaviour) = 
2             { ctx with Behaviour = behaviour }

    这里的behaviour即是上述例子中"body语法字"括号中的代码块。它构建了新的ctx:ActorConfiguration<'a>,即这里的ActorConfiguration<Say>。可以预见,behaviour作为一个被缓存的行为,必定在将来一个合适的时机被调度执行。在这之前,还是先看下代码块中的具体执行内容。

    messageHandler又是一个计算表达式,定义在MessageHandlerBuilder中。这里主要是看下let!与return!的定义。先看let!:

 1         member __.Bind(MH handler, f) =
 2              MH (fun context -> 
 3                   async {
 4                      let! comp = handler context
 5                      let (MH nextComp) = f comp
 6                      return! nextComp context
 7                   } 
 8              ) 
 9         member __.Bind(a:Async<_>, f) = 
10             MH (fun context -> 
11                 async {
12                      let! comp = a
13                      let (MH nextComp) = f comp
14                      return! nextComp context
15                   } 
16             )

    这里MH的定义为:type MessageHandler<'a, 'b> = MH of ('a -> Async<'b>)。这里需要反复强调的是,async声明只是被转换为Async.Bind()这种形式的函数调用,并不代表任何对象。至于返回Async<'b>,那是因为Async.Bind()函数本身返回Async<'b>对象,即AsyncBuilder加工处理的中间对象。不止async,任何计算表达式都是如此。

    Message.receive()的定义为:

1     let receive() = MH (fun (ctx:ActorCell<_>) -> async {
2         let! msg = ctx.Mailbox.Receive()
3         ctx.Sender <- msg.Sender
4         ctx.ParentId <- msg.Id
5         ctx.SpanId <- Random.randomLong()
6         traceReceive ctx
7         return msg.Message  
8     })

    由Bind的定义可以看到,它包装了参数handler并返回新的MH-handler。我开始一直认为,Bind函数中会解析从Message.receive()的返回值,并交给后续代码块处理。但是这里却是返回了一个新的MH-handler,令人百思不得其解。事实上这依然是一个缓存的行为。我们可以把代码展开:

 1      let rec loop() =
 2                // Message.receive()返回的MH-handler 
 3                let msgHandlerReceive = MH (fun (ctx:ActorCell<_>) -> async {
 4                     let! msg = ctx.Mailbox.Receive()
 5                     ctx.Sender <- msg.Sender
 6                     ctx.ParentId <- msg.Id
 7                     ctx.SpanId <- Random.randomLong()
 8                     traceReceive ctx
 9                     return msg.Message  
10                 })
11                 // 匹配msg并处理的代码块
12                 let funCodeBlock = fun (msg:Say) ->
13                     match msg with
14                     | Hello ->  printfn "Hello"
15 
16                     let MH(leftCodeBlock) = loop()            
17                     // return! loop() => MessageHandler.ReturnFrom(loop())
18                     MH(fun ctx ->
19                         traceHandled ctx;
20                         leftCodeBlock(ctx))
21                     
22                 // let!中的处理,返回新的MH-handler(粘合receive和codeBlock,而codeBlock中会通过return!返回新的MH-handler由Async异步递归处理)
23                 MessageHandler.Bind(msgHandlerReceive, fun codeBlock ->
24                      MH (fun context -> 
25                           async {
26                              let! comp = msgHandlerReceive context
27                              let (MH nextComp) = codeBlock comp // 用户代码块返回新的MH-handler
28                              return! nextComp context
29                           }
30                      ) )    

    注意上述MessageHandler.Bind调用时传入的codeBlock即为funCodeBlock,也就是用户代码。这里可以清楚地看到loop()事实上是通过嵌套调用MessageHandler.Bind(各种do!和let!以及return!)构建返回了一个个新的MH-handler,将message接收、解析、用户代码处理等串联起来,当调用loop()时(也就是将来调用ActorConfiguration<Say>.Behaviour时)返回一个串联后的MH-handler,再在合适的时机加以执行。至此,整个流程已经清楚,剩下的就是搞清楚何时执行behaviour的问题了。在构建ActorConfiguration<Say>结束后将由Actor.spawn处理,会创建Actor对象,并在创建中通过Async.Start执行如下代码:

do! MessageHandler.toAsync ctx defn.Behaviour

    这里defn.Behaviour即是当初串联而来的MH-handler,ctx即为ActorCell<Say>。再看下MessageHandler.toAsync就一目了然了:

let toAsync ctx (MH handler) = handler ctx |> Async.Ignore

    接收ActorCell<Say>对象ctx并执行流程。

转载于:https://www.cnblogs.com/Jackie-Snow/p/6242006.html

下载前可以先看下教程 https://pan.quark.cn/s/a4b39357ea24 在网页构建过程中,表单(Form)扮演着用户与网站之间沟通的关键角色,其主要功能在于汇集用户的各类输入信息。 JavaScript作为网页开发的核心技术,提供了多样化的API和函数来操作表单组件,诸如input和select等元素。 本专题将详细研究如何借助原生JavaScript对form表单进行视觉优化,并对input输入框与select下拉框进行功能增强。 一、表单基础1. 表单组件:在HTML语言中,<form>标签用于构建一个表单,该标签内部可以容纳多种表单组件,包括<input>(输入框)、<select>(下拉框)、<textarea>(多行文本输入区域)等。 2. 表单参数:诸如action(表单提交的地址)、method(表单提交的协议,为GET或POST)等属性,它们决定了表单的行为特性。 3. 表单行为:诸如onsubmit(表单提交时触发的动作)、onchange(表单元素值变更时触发的动作)等事件,能够通过JavaScript进行响应式处理。 二、input元素视觉优化1. CSS定制:通过设定input元素的CSS属性,例如border(边框)、background-color(背景色)、padding(内边距)、font-size(字体大小)等,能够调整其视觉表现。 2. placeholder特性:提供预填的提示文字,以帮助用户明确输入框的预期用途。 3. 图标集成:借助:before和:after伪元素或者额外的HTML组件结合CSS定位技术,可以在输入框中嵌入图标,从而增强视觉吸引力。 三、select下拉框视觉优化1. 复选功能:通过设置multiple属性...
【EI复现】基于深度强化学习的微能源网能量管理与优化策略研究(Python代码实现)内容概要:本文围绕“基于深度强化学习的微能源网能量管理与优化策略”展开研究,重点探讨了如何利用深度强化学习技术对微能源系统进行高效的能量管理与优化调度。文中结合Python代码实现,复现了EI级别研究成果,涵盖了微电网中分布式能源、储能系统及负荷的协调优化问题,通过构建合理的奖励函数与状态空间模型,实现对复杂能源系统的智能决策支持。研究体现了深度强化学习在应对不确定性可再生能源出力、负荷波动等挑战中的优势,提升了系统运行的经济性与稳定性。; 适合人群:具备一定Python编程基础和机器学习背景,从事能源系统优化、智能电网、强化学习应用等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于微能源网的能量调度与优化控制,提升系统能效与经济效益;②为深度强化学习在能源管理领域的落地提供可复现的技术路径与代码参考;③服务于学术研究与论文复现,特别是EI/SCI级别高水平论文的仿真实验部分。; 阅读建议:建议读者结合提供的Python代码进行实践操作,深入理解深度强化学习算法在能源系统建模中的具体应用,重点关注状态设计、动作空间定义与奖励函数构造等关键环节,并可进一步扩展至多智能体强化学习或与其他优化算法的融合研究。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值