poj 2187:Beauty Contest(旋转卡壳)

本文介绍了一种解决Bessie在环球旅行中寻找最优路径的方法,通过使用Graham算法来构建凸包并找出最远的点对。详细解释了算法步骤和实现细节,帮助Bessie计算出行程中最长的距离。
Time Limit: 3000MS Memory Limit: 65536K
Total Submissions: 32708 Accepted: 10156

Description

Bessie, Farmer John's prize cow, has just won first place in a bovine beauty contest, earning the title 'Miss Cow World'. As a result, Bessie will make a tour of N (2 <= N <= 50,000) farms around the world in order to spread goodwill between farmers and their cows. For simplicity, the world will be represented as a two-dimensional plane, where each farm is located at a pair of integer coordinates (x,y), each having a value in the range -10,000 ... 10,000. No two farms share the same pair of coordinates. 

Even though Bessie travels directly in a straight line between pairs of farms, the distance between some farms can be quite large, so she wants to bring a suitcase full of hay with her so she has enough food to eat on each leg of her journey. Since Bessie refills her suitcase at every farm she visits, she wants to determine the maximum possible distance she might need to travel so she knows the size of suitcase she must bring.Help Bessie by computing the maximum distance among all pairs of farms. 

Input

* Line 1: A single integer, N 

* Lines 2..N+1: Two space-separated integers x and y specifying coordinate of each farm 

Output

* Line 1: A single integer that is the squared distance between the pair of farms that are farthest apart from each other. 

Sample Input

4
0 0
0 1
1 1
1 0

Sample Output

2

Hint

Farm 1 (0, 0) and farm 3 (1, 1) have the longest distance (square root of 2) 
 
题解:
  平面中给定N个点,让你求距离最远的点对。首先距离最远的一对点肯定在凸包上,所以可以先用Graham算法搞一遍凸包。
  如果枚举凸包的顶点,则效率太低。根据旋转卡壳,我们设两条平行线,当一条平行线与一条凸包上的边重合时,另一条平行线所过的点与离其最远的点一定是与凸包重合的那条平行线上的两点之一。由此性质,我们可以逆时针枚举凸包上的边,然后找离这条边距离最远的点,用这个点与线段两端点的距离更新答案。判断距离相等的条件是三点构成三角形的面积最大,这个可以用向量的叉积判断。
 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstdlib>
 4 #include<cmath>
 5 #include<algorithm>
 6 #include<cstring>
 7 #include<vector>
 8 #include<queue>
 9 using namespace std;
10 const double eps=1e-8;
11 int top,N;
12 int ANS;
13 struct P{
14     int x,y;
15     friend P operator-(P a,P b){
16         P t; t.x=a.x-b.x; t.y=a.y-b.y;
17         return t;
18     }
19     friend double operator*(P a,P b){
20         return a.x*b.y-b.x*a.y;
21     }
22 }p[50005],s[50005];
23 
24 inline int dis(P a,P b){
25     return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
26 }
27 inline bool operator<(P a,P b){
28     int t=(a-p[1])*(b-p[1]);
29     if(abs(t)<=eps) return dis(a,p[1])<dis(b,p[1]);
30     return t>0;
31 }
32 inline void graham(){
33     int tmp=1;
34     for(int i=2;i<=N;i++){
35         if(p[i].y<p[tmp].y||(p[i].y==p[tmp].y&&p[i].x<p[tmp].x)) tmp=i;
36     }
37     swap(p[1],p[tmp]);
38     sort(p+2,p+N+1);
39     s[1]=p[1]; s[2]=p[2]; top=2;
40     for(int i=3;i<=N;i++){
41         while(top>1&&(p[i]-s[top-1])*(s[top]-s[top-1])>=0) top--;
42         s[++top]=p[i];
43     }
44 }
45 inline int RC(){
46     int q=2; ANS=0;
47     s[top+1]=p[1];
48     for(int i=1;i<=top;i++){
49         while((s[i+1]-s[i])*(s[q+1]-s[i])>(s[i+1]-s[i])*(s[q]-s[i])) q=q%top+1;
50         ANS=max(ANS,max(dis(s[q],s[i+1]),dis(s[q],s[i])));
51     }
52     return ANS;
53 }
54 int main(){
55     scanf("%d",&N);
56     for(int i=1;i<=N;i++){
57         scanf("%d%d",&p[i].x,&p[i].y);
58     }
59     graham();
60     printf("%d",RC());
61     return 0;
62 }

 

转载于:https://www.cnblogs.com/CXCXCXC/p/5249416.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值